Microcontrolador PIC 16f84

O quesdo:
Pequeno componente eletronico dotado de uma inteligéncia programavel

Toda a vez que o microcontrolador € alimentado, o programa interno € executado

O pic 1684

18 pinos

13 portas configuraveis como entrada ou saida

4 interrupgdes (tmr0, externa, mudanca de estado e eeprom)

Memoriaflah que permite a gravacdo do programa diversas vezes no mesmo chip.
Memodria EEPROM (Na&o volétil) interna.

Viade programacdo com 14 bits e 35 intrugdes.

1%

[T s,

el

[<|

134

O pic 16f84 possui 13 portas de i/o separada em 2 grupos porta A e porta B

O portA possui 5 pinos que podem ser configurados como entrada ou saida e seus nomes sdo definidos como
RAO, RA1, RA2, RA3 OU RA4. O PINO RA4 TAMBEM PODE SER USADO PARA INCREMENTAR O
CONTADOR TMRO.

O portB possui 8 pinos, configuravel como entrada ou saida sendo RBO, RB1, RB2, RB3, RB4, RB5 E RB6.

O RBO pode ser usado para gerar umainterrupcao externa, e RB4 a RB7 podem gerar uma interrupgao por
mudanca de estado.

EEPROM

Program

b em ory
Mem ory PC /O PORTS

W RTCC

REGISTER
FILE

ALU .
Powver-up Timer
EEPROM Start-up Timer
Data

b em ory -
B+ O Generation wWatchoog timer

Timing Power on reset

DX

QECICLKOUT MCLR idd
QS C1UACLKIN Was

O microcontrolador funciona com gnd no pino 5 e +5v no pino 14 vdd
Um oscilador deve ser ligado nos pinos OSC1 e OSC2 (pinos 16 e 15)

O pino 4 /mclr qunado colocado em GND (baixo) causara um reset. Com +5v, 0 programarecomegad ponto
inicial.

A corrente maxima de entrada de um pino é 25 ma

A corrente maxima de saida de um pino é de 20 ma

O portA aceita entrada méxima de 80ma com saida maxima de 50 ma

A portB aceita entrada de no méximo 150ma, com saida de no maximo 100 ma

clock
O microcontrolador pic divide o clock externo por 4.
7

Interrupcdes do pic

Interrupcéo de Timer O

Acontece sempre que um contador de tempo interno, denominado TMRO estoura, ou sgja, sempre que passar
de OxFF para 0X00.

Interrupcéo Externa

Gerada por sinal externo ligado a uma porta especifica do pic, no caso, RBO

Interrupcéo por mudanca de estado

Funciona em uma borda de subida ou borda de descida
Estainterrupcdo estaligada a RB4, RB5, RB6 E RB7

Interrupcdo de fim de escrita na EEPROM
Usado para confirmar quando os dados foram escritos

Comotrata-las?
Quando acontece uma interrupgéo, o programa guarda na pilha a proxima linha e desvia para um endereco
fixo.

Memoéria de programa do pic
14 bits— 1024 palavras

O endereco 00h é o vetor de reset

O endereco 04h € o vetor de interrupcéo
O restante até

3ffh é parauso geral

Memoéria de dados do pic

Voléatil com registradores de 8 bits e 68 bytes, quando o pic é desligado, os seus dados séo perdidos.

Bank0 Bank1

Ender | Registradores Registradores Ender
00h | indf indf 80h
01h |tmrO option 81h
02h |pcl pcl 82h
03h | status status 83h
04h |fsr fsr 84h
05h | porta Trisa 85h
06h | portb trish 86h
07h | (ndo usada) (ndo usada) 87h
08h | eedata Eeconl 88h
0% | eeadr Eecon2 89h
Oah |pclath Pclath 8ah
Obh |intcon Intcon 8bh

Och 8ch
uso geral 68 bytes Espelho do banco 0
4fh CFh
50h DOh
07fh | ndo disponivel nado disponivel OFFh
Registradores especiais
Gerais
Status
Enderecos 03h e 83h
Bit7 bit6 hit5 bit4 bi3 bit2 bitl bit0
R/w R/w R/w R R R/w R/w R/w
Irp Rp1 Rp0O 1t0 /pd z Dc C

Irp — seletor de banco de memdria usado para 0 enderecamento indir eto

0 =banco 0 e 1 (00h — ffh)

1= banco 2 e 3 (100h e 1ffh)
este bit ndo é usado no 16f84 sendo mantido sempre em 0.

Rp1l e rp0 — seletor de banco de memoria usado para enderegamento Dir eto

00 — banco 0 (00-7fh)
01 banco 1 (80h ffh)

10 banco 2 (100h —17fh) * ndo usado
11 banco 3 (180h — 1ffh) * no usado

* 0 pinc 16f84 s6 possui 0 banco 0 e 1 sendo que rpl sera mantido sempreem 0

/t0 : indicagéo de time-out
0 — indica que ocorreu um estouro de watchDog
1 — indica que ocorreu um power up ou foram executadas as intrucfes clrwdt ou sleep

/pd : indicagdo de power-down
0- dleep foi executada
1- indica que ocorreu um power up ou foi executada aintrucdo clrwdt

Z: indicacdo de zero

0 — aultima operacdo ndo foi zero
1 — autima operagdo resultou em zero

DC - digit carry

0 - ndo houve digit carry
1 — houve digit carry entre o bit 3 e 4 -> passou o nibble
usado quando se trabalha com niimeros de 4 bits

C—carry
0 — ndo houve estouro
1 — houve estouro e ultrapassou 0s oito bits

- estouro do nibble

regitrador option

Bit7 bit6 bit5 bit4 hit3 bit2 bitl bit0
R/iw R/iw R/iw R/iw R/iw R/iw Riw Riw
/rbpu Intedg Tocs Tose Psa Ps2 Ps1 PsO

I/rbpu: Habilitacdo dos pull-ups internos para o portb:
=-pulls-ups habilitador para todos os pinos do portb configurados como entrada
1- pull-ups desabilitados

intedg: Configuracdo de borda que gerard ainterrupgdo externa no rbo:

0 — A interrupgao ocorrera na borda de descida
1 - A interrupcdo ocorrerd na borda de subida

tocs: Configuracdo do incremento paratmrO
0 — tmr0 serdincrementado pelo clock da maquina
1 - tmrO serd incrementado externamente pela mudanca no pino rad/tock1

tose: Configuracdo da borda que incrementara o tmr0 no pino rad/tock1, quando tocs=1
0 — o incremento ocorrera na borda de subida
1 - o incremento ocorrera na borda de descida

psa: configuracdo de aplicacdo do prescaler:
0 — preescaler sera aplicado ao tmr0
1 - serqaaplicado awdt

ps2, psl e psO: configuragdo do valor de prescaler

bits2,1,0 tmrO wdt
000 1:2 1:1
001 1:4 1:2
010 1:8 1:4
011 1:16 1:8
100 1:32 1:16
101 1:64 1:32
110 1:128 1:64
111 1:256 1:128

Registrador Intcon

ESSE REGISTRADOR SERVE PARA CONFIGURAR E IDENTIFICAR AS INTERRUPCOES

Bit7 bit6 bits bit4 bit3 bit2 bitl bit0
Riw Riw R/w R/w Riw Riw R/w R/w
Gie Eeie Tole Inte Rbie TO1f I ntf Rbif

Gie: habilitacdo das interrupcoes

0 — desabilitado

1 — habilitado

eeie: habilitacdo dainterrupcéo de final de escrita na eeprom

0 - ndo trata

1-trata

tOle: Interrupcdo de estouro de tmrO

0— néo trata

1-trata

inte: interrupcdo externa de rb0

0 = ndo trata

1 =trata

rble: interrupcdo de mudancga de estado nos pinosrb4 arb7
0— ndo trata

1-trata

tO1f Identificacdo dainterrupcéo de estouro de tmrQ

0 — ndo ocorreu ainterrupcéo

1 — ocorreu

intf: interrupcéo externarb0

0 — ndo ocorreu

1 ocorreu

rbif: identificagdo da ocorrenciadaint. por mudanca de estado em rb4 arb7

0 — ndo ocorreu
1- ocorreu

registradores pcl e pclath

O pcl armazena os 8 bits penos significativos do program counter (ender ecos 02h e 82h)
O registrador pclath armazena os 5 bits restantes
Como ameméria do pic € maior que 256 bytes, ndo da para acessar tudo com somente 8 bits. Por isso o pclath

possui 0s 5 bits mais altos do pc. Esse registrador é controlado pelo hardware.

portas

conhecendo ostris

Esses registradores servem para confgurar os pinos das portas como entrada ou saida. Quando e colocado “1”
em um bit do tris, o pino relacionado é colocado como entrada. 1= entrada O-= saida.. para configurar 0 porA
deve ser usado o trisa, para portb deve ser usado o trisb

Registrador trisA enderego 85h

Bit7 hit6 bit5 bit4 hit3 bit2 bitl bit0
Riw R/iw R/iw R/iw R/iw
Ra4 Ra3 Ra2 Ral Ra0

Registrador trisB endereco 86h

Bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0

R/iw R/iw Riw R/iw R/iw R/iw Riw Riw

Rb7 Rb6 Rb5 Rb4 Rb3 Rb2 Rb1 RbO

Portas

Registrador portA endereco 05h

Bit7 bit6 Bit5 bit4 bit3 bit2 bitl bit0
R/iw R/iw R/iw R/iw R/iw
Ra4 Ra3 Ra2 Ral Ra0

Registrador portB endereco 06h

Bit7 bit6 bit5 hit4 bit3 hit2 bitl hit0
R/w R/w R/w R/w R/w R/w R/w R/w
Rb7 Rb6 Rb5 Rb4 Rb3 Rb2 Rb1l RbO
Contadores

TMr0 —incremtno pelo clock da maquina ou sinal externo, seu estouro pode gerar uma interrupgao

Conhecendo o wdt

O wdt ou cdo de guarda é um contador incrementado por um clock independente. O pic pussui um contador
de 18ms interno. N&o € acessivel para escritaou leitura. O programador so pode zeré-lo através de clrwdt. Se
der overflow o sistema é resetado.

WDT pode ser desligado durante a gravac&o do pic

E usado para evitar que um sistema trave.

prescaler

configuracéo da escala do clock.

Tmr0 e wdt seré configurado de acordo com o prescal er

Exemplo wdt estouraem 18ms se configurarmos o prescalres em 1:4 ele estourara em aproximadamente em
72 ms.

EEPROM
EEADR

Registrador que indica o enderego de memaria onde ocorrerd aleitura ou escrita na eeprom

EEDATA:
deve ser preenchido com o dado a ser armazenado ha escrita ou contem o dado lido.

EECONS:

Registradores de configuracdo da eeprom eeconl e eecon2
Eeconl é responsével pelas operacles de escrita e leitura da eeprom

Registrador EECON1 endereco 88h

Bit7 bit6 bits5 bit4 bit3 bit2 bitl bit0
Riw R/iw R/iw R/s R/s
Eeif Wrerr Wren Wr Rd
*S- setado pelo sistema

Eeif —indica se ocorreu umainterrupcéo de final de escrita na eeprom (colocadoagui por ndo haver espaco no
registrador intcon)

Wererr — indicacdo de erro de escrita da EEPROM

Wren — habilitac8o de escrita na eprom
0 — ndo permite
1 — habilita escrita na EEPROM

wr: cliclo de escrita na eeprom
0 — zerado pelo hardware quando terminou de escever
1-iniciao ciclo deescrita

rd: ciclo de leitura da egprom
0 - zerado pelo hardware quando terminou de ler
1-iniciaociclodeleitura

EECON2

N&o é um registrador verdadeiro — € usado no ciclo de escrita na eeprom por quest&o de seguranca evitando
alteracdo acidental da mesma.

ENDERECAMENTO INDIRETO
FSR E INDF

Fsr € um ponteiro para um enderego de memdria
Indf — valor do enderecamento indireto

Registrador FSR Enderegos : 04h e 84h
Bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0
Riw R/w R/w R/w R/w R/w R/w R/w

Ponteiro para enderegamento indireto

Registrador : INDF | Enderecos: 00h e 80h

Valor do Enderecamento Indireto

BankO

00 |INDF valor do enderecamento indireto (ndo é um registro
verdadeiro
01 |TMRO Contador Tmrr de 8 bits XARXX XXXX UUUU Uuuuy
02 |PCL Parte baixado PC 0000 0000 0000 0000
03 |STATUS Irp-rp1-rp0-/to-/pd-z-dc-c 0001 1XXX 000Q UUUU
04 |FSR PONTEIRO PARA ENDERECAMENTO INDIRETO XXXX XXXX UUUU UUUU
05 |PORTA - - - -rad-ra3-ra2-ral-ra0 - - - X XXXX --- U UUUU
06 |PORTB Rb7-rb6-rb5-rb4-rb3-rb2-rb1-rb0 XXXX XXXX UUUU UUUU
07 N&o implementado valor sempre 0
08 |EEDATA | Dado para escrita/leitura na eeprom XARXX XXXX UUUU Uuuuy
09 |EEADR Endereco para escrita/leitura na eeprom XARXX XXXX UUUU Uuuuy
0A |PCLATH Parte alta do pc ---0 0000 ---0 0000
Ob |INTCON Gie-egie-toie-inte-rbie-toif-intf-rbif 0000 000X 0000 000U
BANK1
80 |INDF valor do enderecamento indireto
81 | OPTION Rbpu-intedg-tocs-tose-psa-ps2-psl-psO 1111 1111 1111 1111
82 |PCL Parte baixado PC 0000 0000 0000 0000
83 |STATUS Irp-rp1-rp0-/to-/pd-z-dc-c 0001 1XXX 000Q UUUWU
84 |FSR PONTEIRO PARA ENDERECAMENTO INDIRETO XXXX XXXX UUUU UuuU
85 |TRISA - - - -rad-ra3-ra2-ral-ra0 ---1 1111 ---1 1111
86 |TRISB Rb7-rb6-rb5-rb4-rb3-rb2-rb1-rb0 1111 1111 1111 1111
87 N&o implementado valor sempre 0
88 |EECON1 - - - eglf-wrerr-wren-w-rd ---0 X000 ---0 Q000
89 |EECONZ2 Utilizado naincicializac8o da escrita na eeprom
8A |PCLATH |Parteatado pc ---0 0000 ---0 0000
8b |INTCON Gie-egie-toie-inte-rbie-toif-intf-rbif 0000 000X 0000 000U

Legenda : x-desconhecido, u-ndo modificado, g-dependen de outras condic¢des, 1-um, O-zero

O include picl6f84.inc

LI ST
; P16F84.1NC Standard Header File, Version 2.00 M crochi p Technol ogy, |Inc.
NOLI ST

; This header file defines configurations, registers, and other useful bits of
; information for the PIC16F84 microcontroller. These nanes are taken to natch
; the data sheets as closely as possible.

; Note that the processor nust be selected before this file is
; included. The processor may be selected the followi ng ways:

1. Command |ine swtch:
C.\ MPASM MYFI LE. ASM / Pl C16F84
2. LIST directive in the source file
LI ST P=PI C16F84
3. Processor Type entry in the MPASMfull-screen interface

Revi si on History

; Rev: Dat e: Reason:

;2.00 07/ 24/ 96 Renaned to reflect the name change to Pl C16F84.
;1.01 05/17/96 Corrected BADRAM map
;1.00 10/ 31/95 Initial Rel ease

Verify Processor

| FNDEF __ 16F84
MESSG " Processor-header file msmatch. Verify selected processor."
ENDI F

Regi ster Definitions

w EQU H 0000’
F EQU H 0001’

| NDF EQU H 0000'
TVRO EQU H 0001’
PCL EQU H 0002"
STATUS EQU H 0003'
FSR EQU H 0004’
PORTA EQU H 0005'
PORTB EQU H 0006'
EEDATA EQU H 0008'
EEADR EQU H 0009'
PCLATH EQU H 000A
| NTCON EQU H 000B
OPTI ON_REG EQU H 0081’
TRI SA EQU H 0085'
TRI SB EQU H 0086'
EECONL EQU H 0088'
EECON2 EQU H 0089'
G- STATUS Bi 1S === === === == m o mm o mm e e e e oo
| RP EQU H 0007'
RP1 EQU H 0006'
RPO EQU H 0005'

NOT_TO EQU H 0004'

NOT_PD EQU H 0003’

z EQU H 0002"
DC EQU H 0001"
C EQU H 0000'
e 110 @ N = TR
GE EQU H 0007"
EEIE EQU H 0006'
TOIE EQU H 0005'
| NTE EQU H 0004'
RBI E EQU H 0003'
TOIF EQU H 0002’
| NTF EQU H 0001’
RBI F EQU H 0000'
e OPTION Bi £ === m == m o mmm e m e e e e e e e e e e e e e e
NOT_RBPU EQU H 0007"
| NTEDG EQU H 0006'
TOCS EQU H 0005'
TOSE EQU H 0004’
PSA EQU H 0003"
PS2 EQU H 0002"
PS1 EQU H 0001’
PSO EQU H 0000'
G- 51100 11 =T
EEI F EQU H 0004’
WRERR EQU H 0003'
VIREN EQU H 0002"
VR EQU H 0001"
RD EQU H 0000'

RAM Definition

__MAXRAM H CF'
" BADRAM H 07", H50'-H 7F, H 87

Configuration Bits

CP.ON EQU H 00OF'
“CP_OFF EQU H 3FFF
_PWRTE_ON EQU H 3FF7'
_PWRTE_OFF EQU H 3FFF
“WDT_ON EQU H 3FFF
“WDT_OFF EQU H 3FFB
“LP_CsC EQU H 3FFC
“XT_osC EQU H 3FFD
“Hs_osc EQU H 3FFE
“RC_0sC EQU H 3FFF
LI ST

O conjunto deinstrucodes

Termos Utilizados
Work — registrador acumulador temporério indicado pelaletraw

File: referenciaaum registrador (posi¢éo de meméria) usado com aletra f

Literal — um numero qualquer em binério, decimal ou hexadecimal (L- na representacdo do nome de
instrugcdes — k nos argumentos)

Destino — Loca onde o resultado de uma operagdo sera armazenado (f- no registrador passado como
argumento ou em W — registrador Work) o include se encarrega de converter O paraW e 1 para F no destino)

Construcdo de um nome deinstrucéo
Ex:
Decrementar (DEC) um registrador (F) = DECF

Ex:
DECFZ temp,W
Decrementaf (temp) , guardando o resultado em d (W) , salta (S) a proximalinha se o resultado for zero.(Z)

Resumo das | nstrucoes

OPERACOES COM REGISTRADORES (F)

Instrucdo | Argumentos | Descricdo

ADDWF F.d Soma W ef, guardando o resultado em d
ex:
ADDWF FSR,W
Antes: W=0x17, FSR=0xC2 - depois W=0xD9, FSR=0xC2
ADDWEF FSR,F
Antes: W=0x17, FSR=0xC2 - depois W=0x17, FSR=0xD9

ANDWF Fd Légica“E” entre W e f guardando o resultado em d. Ex: ADDLW 0X15

CLRF F Limpaf. Ex. CLRF TRISB (trisb criado com DEFINE)

COMF F.d Calcula o complemento de f, guardando o resultado em d.Ex: comf BOTAO,W

DECF F.d Decrementa f, guardando o resultado em d. Ex: DECF temp,W

DECFz F.d Decrementa f, guardando o resultado em d, pula a préximalinha se o resultado for zero.
DECFZ temp,W

INCF fd Incrementa f, guardando o resultado em d. Ex: INCF CONTADOR,W (F=DESTINO) 00
incremento vai para o registrador temporario W, se for indicado INCF CONTADOR, F, o
préprio registrador seraincrementado

INCFSZ f.d Incrementa f, guardando o resultado em d, pula a préximalinha se o resultado for zero. EX:
INCFSZ temp,W

IORWF f.d Logica“ OU” entre W e f guardando o resultado em d

MOVF f.d Movef parad (copia). Ex. MOVF TEMPO1,W

MOVWF |f Move W paraf (copia) . Ex: MOVWF OPTION_REG

RLF f.d Rotacionaf 1 bit para a esquerda

RRF f.d Rotacionaf 1 bit paraadireita

SUBWF f.d Subtrai w def (f-W), guardando o resultado em d.

XORWF f.d Logia“ OU exclusivo” entre W e f, guardando o resultado em d.

OPERACOESCOM LITERAIS

Instrucdo | Argumentos | Descricdo

ADDLW K Soma k com W, guardando o resultado em W.
Antes: w contem 0x10 — depois W contem 0x25

ANDLW K Logica“E” entrek e W, guardando o resultado em W.

IORLW K Logica“ OU” entrek e W, guardando o resultado em W.

MOVLW |K Movek paraW. Ex: moviw B’00010001’

SUBLW K Subtrai W de k (k-W), guardando o resultado em W.

XORLW K Logica“ OU exclusivo” entre k e W, guardando o resultado em W.

OPERACOESCOM BITS

Instrucdo | Argumentos | Descricdo

BCF f.b Impde 0 (zero) ao bit b do registrador f

BSF f.b Imp6e 1 (um) ao bit b do registrador f

BTFSC f.b Testa o bit b do registrador f e, pulaapréximalinha se ele for 0 (zero).

BTFSS f.b Testa o bit b do registrador f e, pulaapréximalinhase ele for 1 (Um).

CONTROLES

Instrucdo | Argumentos | Descricdo

CLRW - LimpaW.

NOP - Nenhuma operagdo (gasta um ciclo de méaquina)

CALL R ExecutaarotinaR.

CLRWDT |- Limpa o WDT paranéo acontecer o reset.

GOTO R Disvia para o ponto R, mudando o PC.

RETFIE - Retorna de uma Interrupcéo

RETLW k Retorna de uma rotina, com k em W.

RETURN |- Retorna de uma rotina, sem afetar W.

SLEEP - Coloca o PIC em modo de economia de energia

f-file (referéncia a um registrador — posi¢cdo de memaria)
d- destino (F — proprio registrador W-registrador Work)
k — umalitera

b- numero do bit

R- nome de umarotina (I1abel)

Exemplo de uso das instrugoes

MOVLW
Exemplo:

MOVLW 10
Move a constante para o registrador W
(Cuidado com a especificacdo da base numérica)

MOVF, MOVWF

Exemplos:

1 MOVF temp,W

2 MOVF temp,F

3 MOVWEF temp

Efeito em status ou em outros registradores: Seta ou limpao flag Z (MOVF); nenhum (MOVWF)
Estas instrugdes movem dados entre registradores e o registrador W.
1- move o valor em temp para W

3- Move de W paratemp

2- Move de temp para temp (setando o flag z se for o caso)
Inicializando um registrador Exemplo:

temp equ Ox70

moviw 0x10
movwf temp

ADDWF, ANDWF, IORWF, SUBWF, XORWF
Exemplo:
ADDWF temp,W
XORWEF x,F
Efeito em status ou em outros registradores: afeta C, DC, Z (ADDWF, SUBWF); afetaZ (ANDWF, IORWF,
XORWEF)

Estas instrugdes fazem a operacéo especificada no registrador W e outro registrador que vocé escol her.

O resultado pode ser colocado em W no de volta no registrador original dependendo de como ainstrugdo foi
escrita

Por Exemplo:
MOVLW 1 ; poelemW
ADDWEF temp,F ; adiciona 1 emtemp, armazenando o resultado em temp

; W continuaigual a1 aqui

ADDWF x,W ; W=x+W, x ndo é aterado
Quando somando, se o resultado ndo couber em um byte, o flag C é setado.

A operacdo de subtracdo sempre calcula com F-W, entéo tenha cuidado para que ndo signifique um W-F. se
W contém 3 e x contém 10, fazer uma subtracdo ira resultar em 7. Quando subtrair, o bit C é um flag de
subtransbordamento. Se o resultado for negativo, entdo C irdser igual a0. Seo flag C igua a 1, nenhum
subtransbordamento ocorreu. Entéo, ao calcular 10-3 deixa C=1. Mas calcular 3-10 iralimpar C. O resultado,
neste caso sera 0xf9 que € a representacdo em complemento de dois para o nimero -7.

Para calcular o complemento de dois de um nimero negativo, escreva a magnitude como um nimero bindrio.
Para 8, vocé tera 00000111. Entdo inverta todos os bits (11111000) e some 1 (11111001).

Todas as instrugdes nesta secéo setam o flag z se o resultado é zero. sendo o flag Z é limpo..

ADDLW, ANDLW, IORLW, SUBLW, XORLW
Exemplo:

ADDLW .30

XORLW 0x80
Efeito em status ou em outros registradores ModificaC, DC, Z (ADDLW, SUBLW); modificaZ (ANDLW,
IORLW, XORLW)

Estas instrugdes agem como adi¢do, subtracdo, E, OU inclusivo e OU Exclusivo Exceto quando operando
com literais:

ADDLW 2
Adiciona2 em W (e, € claro, deixa o resultado em W) A instrugéo de subtragdo calculaaliteral comW e
pode confundir. Ao invés de escrever:

SUBLW 2 ; Calcula2-W
V océ pode preferir escrever

ADDLW -2 ; Isto é 0 que vocé provavelmente ira preferir escrever
Adicionando 2 negativo ira dar o resultado esperado sem passos desnecessérios.

CLRF, CLRW
Exemplo:
CLRF temp
CLRW
Efeito em Status. Afetao flag Z setando-oem 1
Esta é uma operagdo muito comum para carregar 0 em um registrador e estainstrucéo pode fazer isto em uma
Unica etapa. A instrucdo CLRW limpa W, que também pode ser feito por MOVLW 0. CLRW e MOVLW 0

gastam o mesmo espaco de meméria de programa. A Unica diferenca é que MOVLW néo ird afetar o flag Z,
enquanto CLRW afetara.

COMF
Exemplo:

COMF temp,W

Efeito em status ou em outros registradores Altera Z

Estainstrucdo inverte os bits no registrador especificado. V océ pode armazenar o resultado em W(,W) ou de
voltano registrador (,F). O flag Z sera setado se o resultado for zero (ou limpo caso contrério) .. Se vocé
desgjainverter os bits do registrador W, execute XORLW OxFF que tem o mesmo €feito.

INCF, DECF
Exemplo:

INCF temp,W
DECF x,F
Efeito em status ou em outros registradores Altera Z

Outra operacdo comum € adicionar ou subtrair 1 de um registrador. (INCF +1; DECF -1)..0 resultado pode
ser armazenado em W o colocado de volta no registrador. Se vocé desgjaincrementar ou decrementar W,
tente ADDLW 1 ou ADDLW -1.

INCFSZ, DECFSZ
Exemplo:

INCFSZ temp,W
DECFSZ x,F
Efeito em Status: Pode alterar o contador de programa

Estas instrugdes sdo similares a INCF eDECF. Elas adicionam ou subtraem um do registrador especificado e
armazenam o resultado como direcionado. Estas instru¢fes ndo afetam o flag Z. Mas, se o resultado é zero,
saltam a proxima instruggo. 1sto € muito Gtil é claro, paralagos. Vea o exemplo:

CLRF y
MOVLW .10 ;
MOVWEF i ; =10
MOVFx,W ; W=X

LOOP: ADDWFVY,F ; Y=Y+X
DECFSZ i,F
GOTO LOOP

; Sair aqui com arespostaemy

Vocé pode adivinhar o que este lago faz ?

NOP
Exemplo:

NOP
Efeito em status ou em outros registradores. Nenhum

Estainstrugdo ndo faz nada. Mas é utilizada em loops de temporizac8o para gastar tempo. Se estiver usando
muito destes, vocé pode achar melhor usar outras maneiras para gastar tempo. Exemplo : Goto $+1 ira gastar
2 ciclos de tempo.

RLF, RRF
Exemplo:

RLF temp,F
Efeito em Status: modificaC

Esta instrugcdo move os bits no registrador 1 bit para a esquerda (RLF) ou direita (RRF). O bit extra que é
deslocado vem do flag C e o bit deslocado paraforavai parao flag C Desse modo, se vocé setar C=1 e fazer
um RLF em um registrador que contem 0x81, o resultado ser4 0x03 e o flag C sera setado.

Estainstrucdo é muito usada para manipular bits, mas tem outra propriedade interessante : deslocar a esquerda
um byte multiplica um numero por 2 e deslocar a direita divide um niimero por 2! Pode-se combinar esta
propriedade com a adi¢éo para conseguir facilmente multiplicacfes. Por Exemplo, Suponha que vocé desgja
calcular y=10*x. Bem, isto € 0 mesmo que y=8*x+2*x, certo ? entdo tente isto:

BCF status,C ; C=0

RLF x,F ; X=2¢ X

BCF status,C

RLF x,W ; W=2*X (entdo 4*X)

MOVWF temp

BCF status,C

RLFtemp,W ; W=2*X (entdo 8*X)

ADDWF x,W ; W=8X+2X = 10X

MOVWFy
Esta ndo é umaformafécil de combinar deslocamentos a direita para divisdo, mas se vocé precisa dividir por
2, 4, 8, 16, etc. entdo vocé apenas precisa combinar deslocamentos.

SWAPF
Exemplo:

SWAPF temp,w
Efeito em status ou em outros registradores: nenhum

Este comando move 0s 4 bits mais baixos do registrador para os 4 bits mais atos e 0os 4 mais atos para os 4
mais baixos. V océ pode colocar o resultado de volta no registrador ou em W. Se um registrador contém,
digamos, OxA5 e vocé executa SWAPF, o resultado sera Ox5A.

Esta instrugdo pode ser Gtil ao trabalhar com nimeros BCD ou Hexa. Entretanto, pode ser Util quando vocé
guer mover um registrador para ou de W sem afetar nenhum flag ::

SWAPF temp,F
SWAPF temp,W ; move temp para W com henhuma mudanca de flags

; Se vocé deseja que temp recupere o seu resultado, adicione:
SWAPF temp,F

BCF, BSF

Exemplo:

BCF status,Z
Efeito em Status: nenhum

Estainstrucéo limpa (BCF) ou seta (BSF) o bit indicado em um registrador. O bit pode ter um nome (como Z)
ou vocé pode usar um nimero de 0 a7 (0 € o menos significativo e 7 o mais significativo). As vezes vocé
podera usar isto para economizar algumas instrugdes. Por Exemplo, Suponha que vocé escreveu:

MOVLW Ox7F

ANDWF temp,F

Vocé pode trocar isto por umainstrucao simples BCF temp,7 . N&o € apenas mais rapido e toma menos
espaco. Mas também ndo destroi o valor do registrador W!

GOTO
Exemplo:

GOTO main
Efeito em Status: Nenhum

Como vocé deve saber, ainstrucdo GOTO forga seu programa a seguir a execugdo para o ponto indicado.

CALL, RETURN
Exemplo:

CALL hexout

RETURN
Efeito em status ou em outros registradores. Nenhum
Um CALL ésimilar aGOTO com uma grande excegdo: o valor do contador de programa € salvo em uma
pilhainterna. Quando o programa encontrar um RETURN, a seqliéncia de execucdo serd devolvida paraa
préximainstrucéo apds CALL A pilhainterna do PIC16f84 tem 8 niveis de profundidade.

Assim como GOTO, ainstrucdo CALL pega a parte alta do endereco do registrador PCLATH.

RETLW
Exemplo:

RETLW .99
Efeito em Status: nenhum

RETLW é exatamente igual a RETURN exceto pelo fato de que carregaum valor literal em W antes de
retornar.

RETFIE
Exemplo:

RETFIE
Efeito em Status. Seta GIE

RETFIE funciona exatamente igual a um return, mas também seta a habilitacéo geral de interrupcéo (global
interrupt enable) (GIE). Quando umainterrupcéo de hardware ocorre, elalimpa o GIE e executa o contetido
apontado por umainstrucdo CALL. O uso de RETFIE permite areabilitacdo das interrupgdes e o retorno ao

programa principal, tudo em um Unico passo. Se vocé ndo deseja reabilitar as interrupgdes, simplesmente
execute um RETURN.

BTFSC, BTFSS
Exemplo:

BTFSS temp,7
Efeito em status ou em outros registradores. Modifica o contador de programa

Quando vocé desejar fazer um salto condicional, vocé precisard de uma destas instructes. Elas testam um bit
e satam paraa proximainstrucdo se o bit estiver setado (BTFSS) ou limpo (BTFSC). Namaioriadas vezes a
proximainstrugdo é um goto ou um call, mas pode ser também umainstrucdo simples. Por Exemplo, este
codigo testa temp para ver se é zero. Se €, entdo carrega temp com o valor 0x80. Caso contrario, temo ndo €
alterado:

MOVFtemp,F ;setaoflag Z, nenhum dado é realmente movido

BTFSC status,Z ; teste o bit Z de status e pule proxima instrucao se ndo for zero
BSF temp,7 ; se temp era zero, agora € 0x80!

CLRWDT

Exemplo:

CLRWDT
Efeito em status ou em outros registradores. nenhum

Estainstrucéo informa ao timer do watchdog que o seu programa continua executando. Se vocé ndo estiver
com o watchdog habilitado, vocé ndo precisa desta instrucdo

SLEEP

Exemplo:

SLEEP
Efeito em status ou em outros registradores. nenhum

Colocar o processador para dormir permite que o consumo de energia caia muito., mas vocé iraprecisar de
uma interrupc&o ou de um reset para acordar.

Observe!

Alguns processadores PIC tem significativas diferencas no seu conjunto de instrucfes. Também alguns
compiladores tratam as instrugdes de outra forma para 0s mesmos mnemanicos. Este tutorial foca no padréo
Microchip de mnemdnicos

* * % *x % *x % *x % *x * *x * *x * *x * *x *x * * *x * * * * * * *x * * *

BOTAO E LED - EX1
DESBRAVANDO O PI C
DESENVOLVI DO PELA MOSAI CO ENGENHARI A E CONSULTORI A
VERSAO 1.0 DATA: 11/ 06/ 99

* * % *x % *x % *x % *x * *x * *x * *x * * *x * * *x * * * * * * * * * *

DESCRI CAO DO ARQUI VO

| STEVA MJI TO SI MPLES PARA REPRESENTAR O ESTADO DE
M BOTAO ATRAVES DE UM LED.

* %k ok Kk ok kK ok ok ok
cw

E I T I T S R R

* * *x * % * *x * % * *x *x * % *x *x * * * *x * * *x *x * % * *x * * * *

sk kX k x x * *x * % * *x * *x * * * *x * *x * * * *x * * * * * * * * *

X ARQUI VOS DE DEFI NI GOES *

* * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * * *

*

#| NCLUDE <P16F84. | NC ; ARQUI VO PADRAO M CROCHI P PARA 16F84

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x
1

P * PAG NACAO DE MEMORI A *

=k k k k *k *k % * *x * % *x *x * % * *x * % * *x * * * *x * % * *x * * * * *

: DEFI NI CAO DE COMANDOS DE USUARI O PARA ALTERAGAO DA PAG NA DE MEMORI A

#DEFI NE BANKO BCF STATUS, RPO ; SETA BANK 0 DE I\/EI\/Q?I A
#DEFI NE BANK1 BSF STATUS, RPO ; SETA BANK 1 DE MAMORI A

=k k k k k *k % * % * % * *x * % * *x * % * *x * * * *x * * * *x * * * * *

P VARI AVEI S *

sk kX k *x x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x
1

; DEFI Nl CAO DOS NOMES E ENDEREGCOS DE TODAS AS VARI AVEI' S UTI LI ZADAS
; PELO SI STEMA

CBLOCK 0x0C ~ 7 ENDERECO | NI CI AL DA MEMORI A DE
; USUARI O
W TEMP ; REG STRADORES TEMPORARI OS PARA

STATUS_TEMP ; | NTERRUPCOES
; ESTAS VARI AVEI S NEM SERAO UTI -
: LI ZADAS
ENDC ; FI M DO BLOCO DE MEMCRI A

=k k k k *k %k % * *x * % *x *x * % * *x * % * *x * * * *x * * * *x * * * * *

0 F FLAGS | NTERNOS *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x
1

; DEFI NI CAO DE TODOS OS FLAGS UTI LI ZADOS PELO SI STEMA

=k k k k k *k % * *x * % *x *x * % * *x * % * *x * * * *x * * * *x * * * * *

V* CONSTANTES *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * %
1

; DEFI Nl CAO DE TODAS AS CONSTANTES UTI LI ZADAS PELO S| STEMA

* % * *x % % % *x * * * *x *x * * *x *x * * * *x * * *x *x * * * * * * * * *

* ENTRADAS *
sk X kX *x *x * % *x * % *x * * *x *x * % *x * % *x * * *x *x * % *x * * *x * * *
; DEFI NI CAO DE TODOS O PINOCs QUE SERAO UTI LI ZADOS COMO ENTRADA

; RECOVENDAMOS TAMBEM COVENTAR O SI GNI FI CADO DE SEUS ESTADCS (0 E 1)

#DEFI NE BOTAO PORTA, 2 : PORTA DO BOTAO
;0 -> PRESSI ONADO
;1 -> LI BERADO

=k k k k k % % * *x * % *x *x * % * *x * % * *x * * * *x * % * *x * * * * *

PV * SAI DAS *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x
1

; DEFI NI CAO DE TODOS OS PINOS QUE SERAO UTI LI ZADOS COMO SAi DA
; RECOVENDAMOS TAMBEM COMENTAR O SI GNI FI CADO DE SEUS ESTADCS (0 E 1)

#DEFI NE LED PORTB, 0 : PORTA DO LED
: 0 -> APAGADO
1 -> ACESO

=k k k k k *k % * *x * % * *x * % * *x * % * *x * * * *x * * * *x * * * * *

V* VETOR DE RESET *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * %
1

ORG 0x00 ; ENDERECO I NI Cl AL DE PROCESSAMENTO
GOro INCIO

k k k k x * k% % % *x *x * * * % *x *x *x * * * * *x *x * * * *x *x *x * * * *
;* I Ni Cl O DA | NTERRUPGCAO *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * %
1

: AS | NTERRUPCOES NAO SERAO UTI LI ZADAS, POR | SSO PODEMOS SUBSTI TUI R
; TODO O SI STEMA EXI STENTE NO ARQUI VO MODELO PELO APRESENTADO ABAI XO
: ESTE SI STEMA NAO E OBRI GATORI O, MAS PODE EVI TAR PROBLEMAS FUTURCS

ORG 0x04 ; ENDERECO | NI Cl AL DA | NTERRyPQAO
RETFI E ; RETORNA DA | NTERRUPCAO

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * %
1

* I NI Cl O DO PROGRANA *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * %
1

INICl O
BANK1 ; ALTERA PARA O BANCO 1
MOVLW B' 00000100'
MOVWF TRI SA ; DEFI NE RA2 COMO ENTRADA E DEMAI S

; COMD SAI DAS
MOVLW B' 00000000
MOWAF TRI SB ; DEFI NE TODO O PORTB COMO SAi DA
MOVLW B' 10000000
MOWAF OPTI ON_REG ; PRESCALER 1:2 NO TMRO
; PULL- UPS DESABI LI TADOS
; AS DEMAI S CONFG. SAO | RRELEVANTES
MOVLW B' 00000000
MOVWE | NTCON ; TODAS AS | NTERRUPCOES DESLI GADAS
BANKO ; RETORNA PARA O BANCO 0

=k k k k kx *k % * *x % % * *x * % * *x *x * % * *x * * * *x * * * *x * * * *
1

;* I NI Cl ALI ZACAO DAS VARI AVEI S *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * %
1

CLRF PORTA ; LI MPA O PORTA
CLRF PORTB ; LI MPA O PCRTB

=k k k k *k k*k % * *x * % *x *x * % * *x * % * *x * * * *x * * * *x * * * * *
1

p* ROTI NA PRI NCI PAL *
sk k kx *x *x * % *x * % *x * * *x *x * % *x * % *x * * *x *x * % *x * * *x * * *
MAI' N

BTFSC BOTAO ; O BOTAO ESTA PRESSI ONADO?

GOTO BOTAO LIB ; NAO, ENTAO TRATA BOTAO LI BERADO
GOTO BOTAO _PRES ; SIM ENTAO TRATA BOTAO PRESSI ONADO

BOTAO LI B

BCF LED : APAGA O LED

GOTO MAIN : RETORNA AO LOOP PRI NCI PAL
BOTAO_PRES

BSF LED : ACENDE O LED

GOTO MAIN : RETORNA AO LOOP PRI NCI PAL

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * %
1

* FI' M DO PROGRAMA *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x
1

END ; OBRI GATORI O

* * *x % % * *x * % * *x *x % % *x * * % * *x * * * *x * % * *x * * * *x

CONTADOR MELHORADO - EX4
DESBRAVANDO O PI C
DESENVOLVI DO PELA MOSAI CO ENGENHARI A E CONSULTORI A
VERSAC. 1.0 DATA: 11/06/99

* * *x % % * *x * % * *x * % % *x *x * * * *x * * * *x * % * *x * * * *

DESCRI CAO DO ARQUI VO
CONTADOR QUE UTI LI ZA DO'S BOTCES PARA | NCREMENTAR E DECRE-
MENTAR O VALOR CONTROLADO PELA VARI AVEL " CONTADOR'. ESTA
VARI AVEL ESTA LI M TADA PELAS CONSTANTES "M N' E "MAX".
O VALOR DO CONTADOR E MOSTRADO NO DI SPLAY.

* * % *x % *x % *x % *x * *x * *x * *x * * * * * *x *x * * * * * * * * *

L I S G I N N R N .
L S I B N R N B

=k k k k k k*k K* * *x * * *x *x * % * *x * % * *x * * * *x * * * *x * * * *

;¥ ARQUI VOS DE DEFI NI GCES *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * %
1

*

#| NCLUDE <P16F84. | NC ; ARQUI VO PADRAO M CROCHI P PARA 16F84

=k k k k k * % * *x * % *x *x * % * *x * % * *x * * * *x * * * *x * * * * *
1

P * PAG NACAO DE MEMORI A *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x

: DEFI NI CAO DE COMANDOS DE USUARI O PARA ALTERAGAO DA PAG NA DE MEMORI A

#DEFI NE BANKO BCF STATUS, RPO ; SETA BANK 0 DE NEI\/(:J:QI A
#DEFI NE BANK1 BSF STATUS, RPO ; SETA BANK 1 DE MAMORI A

=k k k k k *k % * *x * % *x *x * % * *x * % * *x * * * *x * * * *x * * * *x *
1

p* VARI AVEI S *

=k k k k *k *k % * *x * % *x *x * % * *x * % * *x * * * *x * * * *x * * * * *

; DEFI NI CAO DOS NOVES E ENDERECOS DE TODAS AS VARI AVEI S UTI LI ZADAS
; PELO SI STEMA

CBLOCK 0x0C ~» ENDERECQO | NI CI AL DA MEMORI A DE
; USUARI O
W TEMP ; REG STRADORES TEMPORARI OS PARA

STATUS_TEMP ; | NTERRUPCOES y
: ESTAS VARI AVEI S NEM SERAO UTI -

: LI ZADAS
CONTADOR - ARMAZENA O VALOR DA CONTAGEM
FLAGS - ARMAZENA OS FLAGS DE CONTROLE
FI LTROL : FI LTRAGEM PARA O BOTAO 1
FI LTROR : FI LTRAGEM PARA O BOTAO 2

ENDC : FI M DO BLOCO DE MEMORI A

sk kX k *k x K* *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x
1

V* FLAGS | NTERNOS *

=k k k k k *k % * *x * % * *x * % * *x * % * *x * * * *x * % * *x * * * * *

; DEFI NI CAO DE TODOS OS FLAGS UTI LI ZADOS PELO SI STEMA

#DEFI NE ST_BT1 FLAGS, 0 ; STATUS DO BOTé\O 1
#DEFI NE ST_BT2 FLAGS, 1 ; STATUS DO BOTAO 2

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x
1

V* CONSTANTES *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * %
1

; DEFI Nl CAO DE TODAS AS CONSTANTES UTI LI ZADAS PELO S| STEMA

M N EQU .0 ; VALOR M NI MO PARA O CONTADOR
MAX EQU .15 ;VALOR MAXI MO PARA O CONTADCR
T FILTRO EQJ .255 ;FILTRO PARA BOTAO

=k k k k k *k % * *x * % *x *x * % * *x * % * *x * * * *x * % * *x * * * * *

0 F ENTRADAS *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x
1

; DEFI NI CAO DE TODOS OS PI NOS QUE SERAO UTI LI ZADOS COMO ENTRADA
; RECOVENDAMOS TAMBEM COMENTAR O SI GNI FI CADO DE SEUS ESTADGCS (0 E 1)

#DEFI NE BOTACL PORTA, 1 : PORTA DO BOTAO
;0 -> PRESSI ONADO
;1 -> LI BERADO

#DEFI NE BOTAC2 PORTA, 2 : PORTA DO BOTAO
;0 -> PRESSI ONADO
;1 -> LI BERADO

=k k k k *x * % * *x * % *x *x * % * *x * % * *x * * * *x * % * *x * * * * *

PV * SAl DAS *
sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x
1

; DEFI NI CAO DE TODOS OS PINOS QUE SERAO UTI LI ZADOS COMO SAi DA
; RECOVENDAMOS TAMBEM COMENTAR O SI GNI FI CADO DE SEUS ESTADCS (0 E 1)

sk kX k *x x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x
1

0 F VETOR DE RESET *

=k k k k *k k*k % * *x * % *x *x * % * *x * % * *x * * * *x * * * *x * * * * *

ORG 0x00 ; ENDERECO I NI Cl AL DE PROCESSAMENTO
G&Oro INC O

=k k k k *k *k % * *x * % *x *x * % * *x * % * *x * * * *x * * * *x * * * *x *

L * I Nl Cl O DA | NTERRUPGAO *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x
1

; AS | NTERRUPCOES NAO SERAO UTI LI ZADAS, POR | SSO PODEMOS SUBSTI TUI R
; TODO O SI STEMA EXI STENTE NO ARQUI VO MODELO PELO APRESENTADO ABAI XO
; ESTE SI STEMA NAO E OBRI GATORI O, MAS PCDE EVI TAR PROBLEMAS FUTUROS

ORG 0x04 ; ENDERECO | NI Cl AL DA | NTERREJPQAO
RETFI E ; RETORNA DA | NTERRUPCAO

* % * *x *x % * *x * % * *x *x * * *x *x * % * *x * * * *x * * * *x * * * *x *

PV * ROTI NA DE CONVERSAO BI NARI O - > DI SPLAY *

sk X kX %k *x * % *x * % *x * * *x *x * % *x * % *x * * *x *x * % *x * * *x * * *

; ESTA ROTINA | RA RETORNAR EM W O SI MBOLO CORRETO QUE DEVE SER)
; MOSTRADO NO DI SPLAY PARA CADA VALOR DE CONTADOR. O RETORNO JA ESTA
; FORMATADO PARA AS CONDI CCES DE LI GACAO DO DI SPLAY AO PORTB.

; a

. kkkkkkokkkk

1

. * *

1

. * *

1 f b

. * *

; g

. kkkkkkk Kk kK

)

. * *

1

. * *

1 e C

. * *

; d

. kkkkkkkkk* *
; .
CONVERTE

MOVF CONTADCR, W ; COLOCA CONTADOR EM W
ANDLW B' 00001111" ; MASCARA VALOR DE CONTADOR

; CONSI DERAR SOVENTE ATE 15
ADDWF PCL, F

; B' EDC. BAFG ; POSI CAO CORRETA DOS SEGUI MENTOS
RETLWB' 11101110' ; 00 - RETORNA Si MBOLO CORRETO 0
RETLW B 00101000' ; 01 - RETORNA S| MBOLO CORRETO 1
RETLWB' 11001101' ; 02 - RETORNA S| MBOLO CORRETO 2
RETLWB' 01101101' ; 03 - RETORNA Si MBOLO CORRETO 3
RETLWB' 00101011' ; 04 - RETORNA Si MBOLO CORRETO 4
RETLWB' 01100111' ; 05 - RETORNA Si MBOLO CORRETO 5
RETLWB 11100111' ; 06 - RETORNA S| MBOLO CORRETO 6
RETLW B 00101100' ; 07 - RETORNA S| MBOLO CORRETO 7
RETLWB' 11101111' ; 08 - RETORNA Si MBOLO CORRETO 8
RETLWB' 01101111' ; 09 - RETORNA Si MBOLO CORRETO 9
RETLWB' 10101111' ; 10 - RETORNA Si MBOLO CORRETO A
RETLWB' 11100011' ; 11 - RETORNA S| MBOLO CORRETO b
RETLWB' 11000110' ; 12 - RETORNA Si MBOLO CORRETO C
RETLWB' 11101001' ; 13 - RETORNA Si MBOLO CORRETO d
RETLWB' 11000111' ; 14 - RETORNA Si MBOLO CORRETO E
RETLWB' 10000111' ; 15 - RETORNA Si MBOLO CORRETO F

=k k k k k *k % * *x * % *x *x * K% * *x * % * *x * * * *x * * * *x * * * * *

P * I NI Cl O DO PROGRANA *

sk kX k *k x K* *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * %
1

INICI O

BANK1 ; ALTERA PARA O BANCO 1

MOVLW B' 00000110'

MOVWF TRI SA ; DEFINE RA1 E 2 COMO ENTRADA E DEMAI S
; COMO SAI DAS

MOVLW B' 00000000
MOWAF TRI SB ; DEFI NE TODO O PORTB COMO SAi DA
MOVLW B' 10000000
MOWAF OPTI ON_REG ; PRESCALER 1:2 NO TMRO
; PULL- UPS DESABI LI TADOS
; AS DEMAI S CONFG. SAO | RRELEVANTES
MOVLW B' 00000000
MOVWE | NTCON ; TODAS AS | NTERRUPCOES DESLI GADAS
BANKO ; RETORNA PARA O BANCO 0

=k k k k x *k % * *x * % * *x * * * *x *x * * * *x * * * *x * * * *x * * * *

;* I NI Cl ALI ZACAO DAS VARI AVEI S *

sk kX k *k x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * *x * %
1

CLRF PORTA ; LI MPA O PORTA

CLRF PCRTB ; LI MPA O PORTB

CLRF FLAGS ; LI MPA TODOS OS FLAGS
MOVLWM N

MOVWF CONTADCR ;I NICl A CONTADOR = M N

GOTO ATUALI ZA ; ATUALI ZA O DI SPLAY | NI CI ALMENTE

sk kX k *k x * *x * *x * *x * *x * * * *x * *x * * * * * * * * * * * * *
1

V* ROTI NA PRI NCI PAL *

sk kX k *k x * X*x * *x * *x * *x * * * *x * *x * * * *x * * * * * * * * *

MAI N

*

*

MOVLW T_FI LTRO

MOWFF FI LTROL ; INICIALI ZA FILTROL = T_FILTRO
MOWFF FI LTRO2 ; INICIALI ZA FILTRO2 = T_FILTRO
CHECA_BT1 ;)
BTFSC BOTAOL ; O BOTAO 1 ESTA PRESSI ONADO?
GOTO BT1_LIB ; NAQ, ENTAO TRATA COMD LI BERADO
;SIM
DECFSZ FILTROL, F ; DECREMENTA O FI LTRO DO BOTAO
; TERM NOU?
GOTO CHECA _BT1 ; NAO, CONTI NUA ESPERANDO
;SIM
BTFSS ST_BT1 _; BOTAO JA ESTAVA PRESSI ONADO?
GOTO DEC ; NAQ, EXECUTA AGCAO DO BOTAO
GOTO CHECA BT2 ;SIM CHECA BOTAO 2
BT1_LIB)
BCF ST_BT1 ; MARCA BOTAO 1 COMD LI BERADO
CHECA_BT2 ;]
BTFSC BOTAQ2 ; O BOTAO 2 ESTA PRESSI ONADO?
GOTO BT2_LIB ; NAO, ENTAO TRATA COMD LI BERADO
;SIM
DECFSZ FILTRO2, F ; DECREMENTA O FI LTRO DO BOTAO
; TERM NOU?
GOTO CHECA _BT2 ; NAO, CONTI NUA ESPERANDO
;SIM

BTFSS ST _BT2 : BOTAO JA ESTAVA PRESSI ONADO?

GOTO |INC : NAO, EXECUTA ACAO DO BOTAO

GOTO MAIN ;SIM VOLTA AO LOOPI NG
BT2_LIB)
BCF ST_BT2 ; MARCA BOTAO 2 COMD LI BERADO
GOTO MAIN ; RETORNA AO LOCPI NG
DEC ; ACAO DE DECREMENTAR)
BSF ST_BT1 ; MARCA BOTAO 1 COMD JA PRESSI ONADO
MOVF CONTADOR, W ; COLOCA CONTADOR EM W
XORLWM N ; APLI CA XOR ENTRE CONTADOR E M N

; PARA TESTAR | GQUALDADE. SE FOREM
;1 GQUAI'S, O RESULTADO SERA ZERO

BTFSC STATUS, Z ; RESULTOU EM ZERQ?
GOTO MAIN ;SIM RETORNA SEM AFETAR CONT.
; NAO
DECF CONTADOR, F ; DECREMENTA O CONTADOR
GOTO ATUALI ZA : ATUALI ZA O DI SPLAY
I NC ; AGAO DE | NCREVENTAR
BSF ST_BT2 ; MARCA BOTAO 2 COVD JA PRESSI ONADO
MOVF CONTADOR, W ; COLOCA CONTADOR EM W
XORLW MAX ; APLI CA XOR ENTRE CONTADOR E MAX

; PARA TESTAR | GUALDADE. SE FOREM
;1 GUAI'S, O RESULTADO SERA ZERO

BTFSC STATUS, Z ; RESULTOU EM ZERO?
GOTO MAIN ; SIM RETORNA SEM AFETAR CONT.
; NAO
| NCF CONTADOR, F ;| NCREMENTA O CONTADOR
GOTO ATUALI ZA : ATUALI ZA O DI SPLAY
ATUALI ZA)
CALL CONVERTE ; CONVERTE CONTADOR NO NUMERO DO
: DI SPLAY
MOVWF PORTB : ATUALI ZA O PORTB PARA
: VI SUALI ZARMOS O VALOR DE CONTADCR
; NO DI SPLAY
GOTO MAIN :NAO, VOLTA AO LOOP PRI NCI PAL
- % *
¥ FI M DO PROGRAMA *

=k k k k k *k % * % * % *x *x * % * *x * % * *x * * * *x * % * *x * * * * *
1

END : OBRI GATORI O

My First PIC Project

Davi d Tait
davi d. tai t @mn. ac. uk

The PIC16C84 (or PIC16F84) fromMcrochip is a really great little
processor. Being based on EEPROM (or "flash") technol ogy neans that

it can be programmed in a matter of seconds and typically it can be
reprogramred around 1000 tinmes. O its 18 pins 13 can be used as
general purpose 1/O Wen prograned as outputs the 1/O pins are able
to source 20mA and sink 25mA (nore than enough to drive LEDs directly
for Exenplo). It is inexpensive and can be programred with sinple DY
hardware. Obviously these features nake the '84 attractive for many
projects but they also nean that it is an ideal processor for anyone
wanting to | earn about microcontrollers.

This short docunent is neant for people who have just built or
purchased a PIC progranmer and are itching to get their '84 doing
sonething if only to convince thensel ves that their programer, PIC or
both are working. To do this we obviously need to | ash together somne
simple hardware and this nmeans knowing a little about the PIC. Here's
a pi nout diagram (looking from above):

S + oo +
RA2 |1 ++ 18] RAL
RA3 | 2 17| RAO

RA4/ TOCKI | 3 16| OSCLl/ CLKIN

/MCLR |4 16C84 15| OSC2/ CLKOUT
VSS | 5 14| VDD
RBO/INT |6 16F84 13| RB7
RBL | 7 12| RB6
RB2 | 8 11| RB5
RB3 |9 10| RB4

oo +

The RA* and RB* pins are |I/O pins associated with the PIC registers
PORTA and PORTB respectively (RA4 can al so be used as an input to the
internal timer and RBO can be used as an interrupt). VDD and VSS are
the power pins. The '84 works over a w de range of voltages but
typically VSS is connected to OV and VDD to +5V. The main reset pin

[MCLR, can sinply be tied to VDD (either directly or through a
resistor) because the PIC includes a reliable power-on reset circuit -
all you need to do to reset the PICis cycle its power. The processor
needs a clock and the OSCl and OSC2 pins can be configured for a
variety of different options including crystal and | ow cost RC
oscil | ator nodes.

A sinple circuit that you can use as the basis of your first PICl6C84
project is shown here:

SN © T © T - +

I I I I

| | #oo- 0o |

| + | | 14 | PICl6C84 |

------- I | I _—

+-[___1--04 16 O---+--]__ 1]--+

------- 1K | | | 4. 7K |

4.5V - | | | |

battery ------- +-[___1--010 | |- | _
| 470 | 5 | 22pF 0. 1uF

| - A e |

I --- LED I I I

I I I I I

oo oo - - S B S o m e oo - - +

(Grab http://ww. man. ac. uk/ ~nmbhstdj/files/test.gif for a nore readabl e
version).

The circuit uses an RC oscillator and one I/O pin (RB4) attached to a
LED. This is all you need to get the PIC to do sonething and see it
happeni ng. Charles Manning (El ectronics Australia, April 1996) wote
an amazi ngly short (6 word) LED flasher programthat you can use with
this circuit:

LI ST P=
MOVLW O
TRI' S 6
OPTI ON
LOOP SLEEP
| NCF 6, F
G&Oro LOCP
END

16C84

The programis witten for MPASM (M crochip's free assenbl er avail abl e
fromhttp://www. m crochip.conm. To use the programyou'll need to
extract it fromthis file using a text editor (DOS EDIT is fine), save
it to another file (LIGHTS. ASM for Exenplo) then assenble it with
MPASM (usi ng the comand "MPASM LI GHTS. ASM') to produce a hex file

LI GHTS. HEX whi ch can then be downl oaded to the PIC using your
programer. lgnore the warnings from MPASM about TRI S and OPTI ON

bei ng "not recommended". Mke sure you programthe PIC with the

wat chdog enabl ed and the RC oscillator sel ected.

If don't have MPASM yet here is a hex representation of the program|
prepared earlier:

: 0C0000000030660062006300860A0328DE
: 00000001FF

You can save these two hex records to the file LICGHTS. HEX and skip the
MPASM step. |If you are using one of ny PIC progranmers you can

downl oad this hex file with the correct configuration by using one of
the foll owi ng commands:

PP - RW8 LI GHTS. HEX (PP V-0.3)
PP - RW LI GHTS. HEX (PP V-0.4)

TOPI C - RAG LI GHTS. HEX (TOPIC V-0.2)

The program uses the watchdog tinmeout as a tining source to decide
when to turn the LED on or off; in fact you can get the LED to flash
at different rates by connecting it to a different bit of PORTB
(RBO-RB7, pins 6-13). This is an unusual use of the watchdog.
Normal |y the watchdog is used to nake sure the PIC is behaving itself
and, unless your programis specifically designed to use it, enabling
the watchdog is a big mistake. The sinple LIGHTS program uses the
wat chdog to wake it from"sleep" (i.e. power down) node; on waking,
the PIC increnents the PORTB register - thus changing the states of
RBO- RB7 - and pronptly goes back to sleep awaiting the next watchdog
timeout. The watchdog timer is clocked by an internal RC oscillator
whi ch has nominally the same period on all PICs therefore a
consequence of using the watchdog for tinmng is that the programwil|
still work correctly no matter what PIC oscillator configuration or
frequency is actually used (well, the frequency should be at |east a
few kHz). This feature nakes the LIGHTS program very useful for
initial testing of alnost any PIC protoboard.

The circuit can be nodified to give a slightly nore entertaining
effect by adding nmore LEDs. Connect the first LED to RBO (pin 6), a
second to RB1 (pin 7), athird to RB2 (pin 8) and so on; it's best to
use at least four LEDs and you can use up to eight (the |ast one
connected to RB7, i.e. pin 13). Each LED should be connected in
series with a 470 ohmresistor and wired between the PIC pin and the
-ve battery connection (VSS) just |like the one in the schenatic

above. The following programwill illumnminate each LED in turn obeying
a to-and-fro pattern (renmenber the display on the car featured in the
old "Knight Rider" TV series?):

LI ST P=16C84

PORTB EQU 6

TRISB EQU 86H

OPTREG EQU 81H

STATUS EQU 3

CARRY EQU 0

RPO EQU 5

VSB EQU 3 Bl T POSI TI ON OF LEFTMOST LED
CLRF PORTB *ALL LEDS OFF
BSF STATUS, RPO : SELECT REG STER BANK 1
CLRF TRI SBA80H : SET PORTB TO ALL OUTPUTS
MOVLW OAH
MOWE OPTREG'80H . ASS| GN PRESCALER (1:4) TO WDT
BCF STATUS, RPO : SELECT REG STER BANK 0
| NCF PORTB, F * TURN ON Rl GHTMOST LED
BCF STATUS, CARRY : CLEAR CARRY

LEFT SLEEP “WAI T FOR WDT TI MEQUT
RLF PORTB, F * TURN ON LED TO LEFT
BTFSS PORTB, MSB . REACHED LEFTMOST?
GOTO LEFT : LOOP | F NOT

RIGHT SLEEP “WAI T FOR WDT TI MEQUT
RRF PORTB, F * TURN ON LED TO RI GHT
BTFSS PORTB, 0 : REACHED RI GHTMOST?
GOTO RIGHT ' LOOP | F NOT
GOTO LEFT : START NEW CYCLE

END

MPASM shoul d assenbl e the programto give this hex representation:

: 100000008601831686010A3081008312860A031056
:100010006300860D861D08286300860C061C0C28CC
: 020020000828AE

: 00000001FF

Again you need to tell your programmer to enabl e the watchdog tinmer
and RC oscillator. |f you save the four hex records to a file
(WALKLEDS. HEX say) you can downl oad the program using ny programers
by runni ng one of these commands:

PP - RWB WALKLEDS. HEX (PP V-0.3)
PP - RW WALKLEDS. HEX (PP V-0.4)
TOPI C - RWG WALKLEDS. HEX (TOPIC V-0.2)

As it stands the "LED wal ki ng" programis suitable for four LEDs but
you can change the value of MSB if you want to use nore - MSB shoul d
be 4, 5, 6 or 7 for 5, 6, 7 or 8 LEDs.

The program avoi ds using the deprecated TRIS and OPTION instructions
(Mcrochip don't want you to use them because they may not be
supported by future PICs). Therefore, unlike the previous program no
war ni ngs are generated when the programis assenbled. To prevent
MPASM gener ati ng annoyi ng nessages about the correct use of bank
selection bits | have inverted the nost significant bit of any bank 1
regi ster address (e.g. | use TRISB*"80H rather than sinply TRI SB where
the """ operator denotes bitw se exclusive-OR). This is just a trick
I"ve picked up and there are several other ways to silence MPASM in
fact MPASM al | ows specific nmessages to be suppressed. However, | like
my prograns to assenble without generating warnings or nessages even
if many of them can be safely ignored. Getting MPASMto shut up

wi thout resorting to deliberately suppressing warnings and nessages
takes a little effort.

As a final Exenplo, the followi ng programw |l give nuch the same
effect as the 4-LED WALKLEDS program You'll notice that even though
it does the sane as the previous programthis one is nmuch | onger and
it's certainly not meant as an Exenplo of efficient progranm ng.
Instead it is designed to illustrate a few key PIC idions and

techni ques. Anongst other things it contains an interrupt handler
routines to read and wite data EEPROM and shows how tabl e | ookups
are inmplenented on the PIC. The program contains Exenpl os of sone of
the nore useful MPASM features such as two kinds of macro. It also
shows such things as how to override the default radi x (hex) for
nunmbers and enbed PIC configuration information. Stylistically at
least it looks nore like a "real" PIC program

; PATTERN. ASM

; A programdesigned to illustrate reading/witing data EEPROM

; and timer interrupts. A table of values is witten to EEPROM
; and the processor then executes a "do nothing" |oop. Wen the
; timer overflows it interrupts the processor and the next val ue
; in sequence is read from EEPROM then witten to port B where it
; is displayed on LEDs. By changing the table any pattern of up
; to 64 values can be displ ayed.

; Copyright (C) 1997 David Tait (david.tait@man. ac. uk)

PCL
STATUS
PORTB
EEDATA
EEADR
| NTCON
OPTREG
TRI SB
EECON1
EECON2

RPO
4

G E
TOI E
TOI F
V\REN
VR
RD

#defi ne
#defi ne

magi ¢

PROCESSOR 16C84
__CONFI G O3FF3 ; RC oscillator

equ
equ
equ
equ
equ
equ OBH
equ 081H
equ 086H
equ 088H
equ 089H

;standard register files

O©COoOOOWN

equ
equ
equ
equ
equ
equ
equ
equ

OFRLNNOINDNO

bankO bcf STATUS, RPO ;sel ect bank O
bank1 bsf STATUS, RPO :sel ect bank 1

macr o ;magi c EEPROM wite sequence
movlw 55H

nmovwf EECON2"80H

movlw 0AAH

nmovwf EECON2"80H

endm

cbl ock OCH ;vari abl e bl ock
n_val s

n_tnp

endc

chkkkkhkhkkhkhkrk kA Ak Ak kA Ak khkhkxkk ok k.
1 l

; Main programentry point ;

BRI R I R I R I R I R O
1 1

org 0
got o start

chkkkkhkhkkkhkhkkkhkhkkhkAhk Ak Kk hkhk kK-
; Interrupt entry point ;

chkkkkhkhkhk kA xk kA Ak Kk kA Ak hkhkhk ok k -
1 1

org 4

; Normally context should be saved before the interrupt service
; routine and restored after but that's not necessary in this program
; because the processor is doing nothing between interrupts. See

; the PIC datasheet for the reconmended procedure.

novf EEADR, w

xor wf n_val s, w

btfsc STATUS, Z ; EEADR == n_val s?

clrf EEADR ;yes, start again at O

cal | ee_rd

novf EEDATA, w : read EEPROM

nmovwf PORTB ;di splay byte

i ncf EEADR, f ; new addr ess

bcf | NTCON, TOI F ;clear interrupt flag

retfie
start clrf PORTB

bank1

clrf TRI SB*80H ;port B all outputs

movliw B 00000111

novwf OPTREG*80H ;timer O prescale 256:1

bsf EECON1780, WREN ;allow witing to EEPROM

bankO

cal | ee_init ;transfer table to EEPROM

bank1

bcf EECON1~80H, WREN ;disallow witing to EEPROM

bankO

bsf | NTCON, TOI E ;enable tiner interrupt

bsf | NTCON, d E ;globally allow interrupts
| oop goto | oop ; do not hing forever
;oee_init

; initialise EEPROM fromtabl e

ee_init clrw

cal l | ut ;get nunber of table entries
novwf n_val s ;and save
nmovwf n_tnp ;and again
clrf EEADR
decf EEADR, f ; EEADR = -1
ee_inl incf EEADR, f ; next address
novf EEADR, w
addlw 1
call I ut ;get associated table entry
novwf EEDATA
cal | ee_wr ;wite to EEPROM
decfsz n_tnp,f ; anot her ?
goto ee_ inl ;yes
clrf EEADR ;no, then finished
return

:lut

; look up table

| ut addwf PCL, f ;add Wto PCL to get table entry
retlw D 12 ;nunber of entries in table

retlw B 1000 ;first entry
retlw B' 1000

retlw B' 0100’

retlw B' 0100’

retlw B' 0010’

retlw B' 0010

retlw B' 0001"

retlw B' 0001’

retlw B' 0010'

retlw B' 0010’

retlw B' 0100

retlw B 0100 ;last entry

;ee_wr

; Wites byte in EEDATA to EEPROM | ocati on at EEADR. Interrupts
; should be disabled before calling ee_w.

ee_w bank1

magi ¢ ;i nvoke magi ¢ sequence
bsf EECON1"80H, VR ;start wite
ee_wl btfsc EECON1780H, \R ;write conpl ete?
goto ee_wl ; no
bankO
return

; ee_rd
; Reads EEPROM byte at EEPROM | ocati on EEADR i nt o EEDATA

ee rd bank1

bsf EECON1780H, RD ;start read

bankO

return ;read will be conmplete on return
end

Here is the MPASM generated hex file (save as PATTERN. HEX) :

: 020000000E28C8

: 0800080009080C060319890127
:10001000442008088600890A0B110900860183160E
:10002000860107308100081583121C2083160811F1
:1000300083128B168B171B2800012C208C008D003F
: 1000400089018903890A0908013E2C2088003A2089
:100050008D0B22288901080082070C3408340834EB
:1000600004340434023402340134013402340234DE
:1000700004340434831655308900AA30890088146A
:100080008818402883120800831608148312080079
: 02400EO0OF33F7E

: 00000001FF

Wth ny programmers this can be downl oaded usi ng:

PP PATTERN. HEX (PP V-0.4)
TOPI C - G PATTERN. HEX (TOPIC V-0.2)

These projects may not seemvery exciting but if you have just built
or bought a PIC programrer and have hurriedly put together the sinple
test circuit then seeing a LED flash on and off is exceedingly
gratifying. | hope you find that out for yourself. Good |uck

2nd Edition
4/ Feb/ 97

FILESTXT Thisfile

PP.TXT Brief description of the programmer and the hardware
dependent
parts of the software

PP: PIC16X8X PROGRAMMER HARDWARE

David Tait
david.tait@man.ac.uk
http://www.man.ac.uk/~mbhstdj

| released information about a simple PIC programmer in early 1994 because
| couldn't find any homebrew designs around at the time. That'sall changed
now. There has been an explosion of hobbyist interest in PICs and as
aresult there's plenty of DIY information available in magazines and

on web sites. The problem for most people now is choosing between al the
stuff that's available. Although afew of the other offerings you'll find

are based on variants of my original stuff, and there are even commercial
versions from Maplin, DonTronics and a others (but don't get the wrong
idea - nobody has paid me a penny), that shouldn't be taken as any kind of
endorsement of what you've got here. | can perhaps make your choice a

little easier by telling you that what I'm offering is some DOS command-line
software which is only capable of programming the PIC16X8X family (16F83/84
and 16C84) using relatively simple hardware (see pp.pcx) or even trivial
hardware (see gandd.pcx) connected to the parallel port of aPC. Now, if you
really wanted something to program other PICs, ook elsewhere; if you wanted
aGUI, look elsewhere; if you wanted Windows software, look elsewhere; or if
you would have preferred a serial port connection, look elsewhere. All of

those alternatives are out there somewhere. On the other hand, if you've

built a programmer which you suspect may be compatible with mine, and want
some no-frills DOS software to program the 16X8X family, look here.

The essential features of what has become known as a"Tait"-style programmer
can be summarised as follows:

0 Usesthe PC pardlel port pins DO, D1, D2, D3, ACK and GND.

0 The PIC programming pins RB6 and RB7 are connected to DO and D1
via open collector buffers (either inverting like the 7406 or
non-inverting like the 7407).

0 RB7 isconnected to ACK via one of the open collector buffers.

o ThePIC VDD pinis connected to +5V either viaa 4066 CMOS
analogue switch (possibly the parallel combination of two or
three 4066 switches) or viaa PNP transistor.

0 The PIC/MCLR pin is connected to the programming voltage (about
13-14V) either viaa 4066 switch or a PNP transistor.

There are therefore at least four possible variants:

0 7406 buffers/4066 switches
0 7407 buffers/4066 switches
0 7406 buffers/PNP switches
0 7407 buffers/PNP switches

The original description contained an ASCII sketch of a simple 7406/4066
version (thisis still around as pic84pgm.zip in my PIC archive - reach it
viathe URL at the head of this document). However, possibly the most
popular variant is based on 7407/PNP hardware and an Exemplo of this type

is shown in the file pp.pcx. The programmer should work with most PCs

but the connection between the hardware and the PC should be fairly short.

A couple of small value capacitors (100pF or so) one connected between RB6
and GND and the other between RB7 and GND may be needed to suppress the
"ground bounce" exhibited by some buffers. PCB designs for various
versions of the hardware can be found in several places (for Exemplo,

there are a couple in my PIC archive: the 740X/4066 versions can be built
using the layout in pic84art.zip produced by Michael Laidlaw; and Steve
Willis has provided alayout for a PNP transistor variant in the file

pp875.zip). The hardware can be used to program most midrange PICs

but | don't supply any software to do that myself. Note, because of the

higher current requirements of the non-EEPROM PICs | don't recommend using
the 4066-based hardware with these devices although it may work.

Thereisnow alot of software around which is compatible with the
programmer (for Exemplo, www.dontronics.com offers programs written

by Nigel Goodwin for the DonTronics version; or see www.sistudio.com for
PIP-02 by Silicon Studio). My own software is pretty basic and

as mentioned previously only works with the 16X8X family. The softwareis
designed to be run under MS-DOS and the user interface, if it can be
dignified by such a description, is documented in the file program.txt.

The current version of the software is V-0.5. There have been afew

subtle changes since V-0.4 but the only essentia difference between V-0.5
and the previous version is slightly better support for the 16F84. Another
small changein V-0.5 is a more explicit separation between the front-end
and the hardware dependent parts. | hope this makes it easier for people

to port the program to other environments. It should also make it a bit
easier for me to document my other simple 16x8x programmer designs (like
the forthcoming update for my TOPIC board - see topic02.zip inthe PIC
archive) because the description in program.txt is common to them all.

The remainder of this document describes the hardware dependent features
of the version of my software intended for use with any "Tait"-style

programmer. The executable for thisversion isin pp.exe and the C
source is archived in src.zip.

MS-DOS environment variables are used to communicate with the driver
software (i.e. the hardware dependent parts of the program). (AsMS-DOS
reserves very little memory for environment variables it may be necessary
to increase the allocation: more memory can be reserved using the /E:nnnn
option of command.com and using /E:1024 will quadruple the default
alocation for Exemplo.) The hardware driver changesits behaviour in
response to the following variables:

0 PPLPT=nn Select printer port nn (default 1 thus selecting LPT1
which is often, though not always, at address 378
hex). The software will only uselikely printer
port addresses.

0 PPDEBUG=nn Enable debugging if nn=1 (default nn=0). This
invokes amode that lets you verify correct
operation of the hardware. In debug mode hitting
enter repeatedly will toggle each of the LPT pinsin
turn and also checks the input line for consistency
when DO (equivalent to RB7) is toggled.

o PPDUMP=nn Dumpin INHX16 format if nn=16 (default INHX8M).

0 PPDELAY=nn Add nn*0.83 microseconds delay between LPT port
accesses (possibly useful on fast PCs). The
meaningful range of nnis 0 to 127 and the default
is6.

0 PPSETUP=nn Select hardware setup:

nn=0 selects 7406/4066 switches (default).
nn=1 " 7407/4066 switches.

nn=2 " 7406/PNP transistor switches.
nn=3 " 7407/PNP transistor switches.

No environment variables NEED to be set for the origina hardware

described in pic84pgm.zip or the Maplin version. To use the programmer
design shown in pp.pcx you should make sure PPSETUP=3. This can be done
by several means: by adding

set ppsetup=3

to your autoexec.bat file; by simply typing the same thing before using

the software; or by writing a batch file to set the variable and run the
software which you can then use instead of invoking pp directly. The batch
file approach is probably the most convenient. Here's an Exemplo
designed for 7407/PNP hardware on LPT2:

@echo off

set ppsetup=3

set pplpt=2

pp %1 %2 %3 %4
Set ppsetup=

set pplpt=

A dummy batch fileis provided in mypp.bat so that you can customise it
for your own version of the hardware.

Now you should read program.txt to learn more about the programmer software.

V-0.2 19 April 1998

PROGRAM.TXT How to use the programmer software

PP: GENERIC PIC16X8X PROGRAMMER SOFTWARE

David Tait
david.tait@man.ac.uk
http://www.man.ac.uk/~mbhstdj

Introduction

This document describes some simple MS-DOS based software for programming
Microchip PIC16x8x (i.e. the 16F83, 16F84 and 16C84) microcontrollers.
Different versions of the software are available depending on the interface
between the programming hardware and the PC. What is described hereis

the common front-end or hardware independent part. Throughout this

document the software is called "pp" athough the actual name may depend on
the hardware specific variant. Also depending on the hardware driver

certain features mentioned here may not be available. For Exemplo, some
hardware cannot read back information from the PIC and therefore it is
impossible to use features that rely on this capability.

Overview

The purpose of the software is to take an image of a PIC program from a
file produced by an assembler or compiler and download it to the PIC. The
image should be in a hex file: the most common hex file format is
designated INHX8M by Microchip but an older style called INHX 16 is still
common. The software can read data from either type of hex file. There
are four separate areas of a PIC that can be programmed:

0 Programmemory Thisiswhere the PIC program goes (the
PIC starts execution at location O of
program memory). There are 1024 14-bit
words of program memory (the 16F83 has 512).

o Datamemory 64 bytes of EEPROM memory.

o ID locations 4 words of memory which can be used to tag
the PIC by storing a unique number there.
(there are few other locations called "test
memory" in this area).

0 Configuration word Used to select PIC oscillator setup and
enable or disable the watchdog, power-up
timer and code protection.

The hex file can contain information about any or al of these areas and

the software will program them accordingly. Embedding al the information
in the hex file makes life very ssimple. In this case al you need to do to
program a PIC with the hex file "prog.hex" istype:

pp prog.hex

How simple can you get? (Actualy, if you are working on the same project
for awhileit'slikely that you are repeatedly downloading the same hex

file. Inthis case you can write a batch file called "p.bat" with the

contents:

@echo off
pp prog.hex

and then all you need to typeis:

p

which redlly is difficult to beat for simplicity. More about using

batch files later). Most PIC development tools have the means to embed
all the necessary information in the hex file. For Exemplo, MPASM,
Microchip's free assembler, includes the three directives, CONFIG,
__IDLOCS and DE, to define configuration, ID and data memory
respectively. In fact, the only way to use pp to program data memory
and the ID locations is to embed information about these areasin the
hex file. However, asit is so vita, the software does provide another
way to define the configuration word if it is not included in the file.
(The programs in pichex01.zip, which should be available where you found
this stuff, contains utilities to build integrated hex files for the

16C84 if your development tools don't.)

The software lets you erase the PIC (i.e. set the PIC contents back to

its unprogrammed state). Use this function sparingly; it isn't

necessary to erase the entire PIC before it is reprogrammed because each
word is overwritten during programming. The software is designed so
that it only overwrites locations which are different to those in the

hex file (which meansthat if you try to program the PIC twice with the
same hex file nothing is overwritten the second time). Erasing the PIC
can slow down the programming process as it will force all memory to be
updated. Another point to consider is the finite lifetime of the PIC; a
16x8x can only be reprogrammed afinite number of times (minimum 100 but
1000 typically) therefore minimising the number of times each location

is reprogrammed can extend the useful life of the PIC. There aretimes
when the PIC must be erased however. In particular the erase function
can be used to defeat code protection: part of the config word is used

to prevent the PIC contents from being read which in turn prevents
people from cloning your PIC. The contents of a code protected PIC
cannot be overwritten but by erasing the PIC, code protection is removed
thus making the PIC available for reprogramming again.

The PIC contents can be dumped to a hex file or compared with (verified
against) another hex file. The verify featureis only useful if the PIC

is not code protected athough the software does verify as it goes along.

It isimportant that the PIC is verified under the same conditions as it

was programmed: if the software was used to define the config word during
programming it must also be used to do the same during verification. If
you don't do this verification will probably fail when the configuration
word is compared.

Using the software

If al iswell when you type pp you should see a banner similar to this

one:
PIC16F84 Programmer Version 0.5 Copyright (C) 1994-1998 David Tait.
Usage: pp [-Ixhrwpcdevgosn!] hexfile

Config: I=LP, x=XT, h=HS, r=RC
w =WDTE, p=PWRTE, c = code protect

Others: d=dump, e=erase, v = verify, g=go
o=old, s=silent, n=noread, ! = no wait

Defaults: RC, /IWDTE, /PWRTE, unprotected,
no erase, stop, new, verbose, read, wait

Bug reports to david.tait@man.ac.uk

Thisis meant to indicate that pp isinvoked with acommand line that
consists of an optional set of switches signalled by the prefix *-'
(though '/ works as well if you prefer) followed by afilename. The
switches are used to either define the configuration word (overriding
the config specified in the file) or invoke a programmer function or
both. Some valid command lines might be;

pp prog.hex

pp -l -w prog.hex L P oscillator and watchdog enabled
pp -d new.hex dump PIC to new.hex

pp -ec prog.hex erase and code-protect

This shows how switches can be defined individualy (-1 -w) or asa
block (-ec). Some switch combinations don't make sense or may be
contradictory and the exact action is not obvious. For Exemplo:

pp -Xr prog.hex

tells the programmer to select both the RC oscillator and the XT oscillator
configuration. Contradictions like this are resolved by obeying the last
switch specified (in this case the RC oscillator is selected).

Before using the software to program a PIC it may be necessary to inform
the hardware driver about the specific hardware attached. Thisis
typically done using MS-DOS environment variables (details are in the
hardware specific documentation). An easy way to do thisisto run pp
from a batch file which sets up the environment variables as required.
Here's atypical Exemplo which I'll call mypp.bat:

@echo off

set ppsetup=3

pp -n %1 %2 %3 %4
Set ppsetup=

Here the ppsetup variable tells the driver something about the hardware,
then pp isinvoked with afixed switch (-n in this case) and other
arguments are taken from the command line and when pp exits ppsetup is
removed from the environment. The batch program can be run just like pp
itself:

mypp -xw prog.hex set ppsetup=3 then run pp -n -xw prog.hex

Though pp is not designed to be used with Windows it can be runin aDOS
box. The best way to do this with Windows 3.1 isto create a batch file

appropriate to your setup then use the PIF editor to create a PIF file

to run the batch program. The PIF file should specify exclusive

execution and windowed display but if you want to see any error messages
it should not specify close window on exit; the defaults are OK otherwise.
File Manager can then be used to drag the PIF file onto afolder to make

an icon which you can simply double-click to run pp with the command line
entered with the PIF editor. | don't use Windows 95 but perhaps something
equivalent can be done, otherwise just run the batch file or pp itself from
within a Win95 DOS box.

After any hardware specific environment variables have been set the
software should be run once before trying to program aPIC. Thiswill
let the driver initialise the hardware.

Switches

This section gives adetailed listing of al the switches used by pp. As
mentioned previously, embedding information in the hex file means you don't
have to use any switchesto program a PIC. However, if the configuration
information is not contained in the file then it should be defined on the
command line (switches -Ixhrwpo) otherwise a default word is written to the
PIC and thisis unlikely to be the one you want. Dumping, erasing and
verification are invoked by switches -d, -e and -v respectively. Finaly,

some switches (-gsn!) change the behaviour of the program.

Configuration switches

Thefirst few switches are used to set the 14-bit configuration word. In
the 16F83/84 the config word is organised like this:

CC CCCcC cccc PWOO

where the bits marked C are used to enable/disable code protection, the

P bit (Microchip calsit PWRTE) controls the power-up timer, the W bit

(or WDTE) enableg/disables the watchdog timer and the two bits marked OO
define the PIC oscillator configuration. By default (i.e. if neither

the hex file nor the command line switches define the config word) pp

uses 11 1111 1111 1011 (3FFB hex); this corresponds to no code

protection, power-up timer disabled, watchdog disabled and RC

oscillator. The 16C84 has a dlightly different layout:

where the bits marked - are don't care (though they read back as 1).
Another differenceisthat the sense of Pisinverted (i.e. 1 enables

the power-up timer). Thusif 3FFB hex iswritten to a 16C84 it
would select no code-protection, power-up timer enabled, watchdog
disabled and RC oscillator. The config switches are used to define the
C, P, W and O hitsasfollows:

-l select the LP (low power) oscillator mode
-X select the XT (crystal) oscillator mode

-h select the HS (high speed) oscillator mode

-r select the RC (resistor/capacitor) oscillator mode
-w enable watchdog timer

-p enablethe power-up timer

-c enable code protection

There are afew casesto consider. If any of the above switches are
specified on the command line then the config word defined in the hex
fileistotally ignored (overridden). If none of the above are

specified then the file config is used. If none are specified, and the
config word is not defined by the file, the default word isused. To
take care of the differences between the 16F83/84 and 16C84 another
switch isavailable:

-0 assumeold style (16C84) config layout

The -0 switch is only really needed if you are programming a 16C84 and
must enable the power-up timer on the command line (using -p). It does
have a couple of other side effects though: using -o means only the low

order five bits of the config word are verified (all bits are

programmed); usually the software prints a precis of the config word
(like"CP-X" meaning code protection and power-up timer enabled and XT
oscillator selected) and the precis will lie about the P bit if the -0

switch is not used appropriately. If the default word is used to define

the config (because neither the command line nor the file say what it

should be) then -o inverts the P bit (i.e. the default word becomes 3FF3

hex). The -o switch on its own DOES NOT override or change a file-specified
config word. Thus, provided the hex file defines the correct style of

config (and sets al high order config bitsto 1) you can just forget about

-0 regardless of whether you are programming a 16F84 or a 16C84. Thereis
no switch to indicate a 16F83 is being programmed and it's up to you to
make sure you don't try to write more than 512 words of program memory

in this case.

Dumping, erasing and verifying

Other programmer functions are requested using the following switches:
-d dump the PIC contents to the given file.
-e erasethePIC
-v compare PIC contents with the given file

Usually -d is used on its own (or with one of the behavioural switches
described later). If thefile specified to receive the dump already

exists the dump is aborted. If any parts of the PIC arein their
unprogrammed state they are not dumped, however, unprogrammed holesin
the program or data memory are dumped. If the PIC isentirely blank the
dump fileis not created. The -e switch can be used with or without a

file argument; in the first case the PIC is erased then programmed and

in the second case it is simply erased. The -v switch reads the PIC and
compares it with what should have been programmed according to both the
file and the other configuration switches. Verification halts at the

first difference found and the config word is compared last.

Switches changing program behaviour

The remaining switches are used to change the normal program behaviour.
The exact effect depends on the hardware driver. These switches are:

-g go- tellsthedriver to enable PIC execution

-s runsilently

-n noread - don't read from the hardware

-l no wait - program the PIC without waiting for interaction

If the hardware can program the PIC in-circuit (Microchip call thisin-
circuit serial programming or ICSP) the -g switch tells the hardware to
let the PIC run after programming, or, if no file argument is specified,
simply enable the PIC to run. By default the PIC isheld in reset after
programming. If the driver doesn't support ICSP the action of -g is
undefined and it's best not to use it. Usually pp gives someindication
of progress and prints error messages (verbose mode) but -s suppresses
this behaviour. If the -s switch is used success or failureis

signalled using the ERRORLEVEL return value (O if al isOK, 1 for
error). Asdescribed earlier the PIC isread beforeit is programmed

but not al hardware can support this. The -n switch tells pp that the
hardware can't read from the PIC. This switch is essentia for some
hardware. Even if the hardware is supposed to be capable of reading
from the PIC the -n switch is useful for debugging. For Exemplo, try -n
if the programmer gives "verify failed during programming" errors.
Obviously -n is not compatible with -d or -v. Some hardware needs to
know when the PIC is ready to be programmed and asks the user to confirm
this condition. Using -! will skip the confirmation step (note -s
asserts -! t00).

The software described in this document can be used to program PIC16x8x
microcontrollers when used with suitable hardware. If al you want to
dois program a PIC and the configuration word is defined in the hex

file then the only command line argument needed is the filename of the
hex file. Running the program from within a batch file makes it

possible to customise the program behaviour (it is even easy to use a

batch file to make a chatty version that prompts for the hex filename

and any command lines switches). Ultimately if you don't like anything
about the way pp works the sourceis provided so that you can change it
for yourself.

V-0.2 19 April 1998

PP.PCX PIC16X8X programmer schematic

TV

=0
=
=

FL1

]
-
(n*]

-+

v

it

1]1]

=

on

01

o

0z

-

03

fnl

()

=

—

aCE

21
PHF

|

[LUl e Bl [Pl]
L Ol B Sl (T) (K]

(leleleleleToToTeTe e 0 Te)

o}
m
o
on
B

&t
10k

U3a
o7

|1DD

REY

11

10 ACK

|

|

1EIEIn I 10k E

Uze
THO7

‘Clossic’ FICIECEY Frogrommet:

R 10
10k

Copyright 1996 Dowvid Taid

PP.EXE

SRC.ZIP

PIC programmer software

C source code for the programmer software

QANDD.PCX The quick-and-dirty programmer schematic

Quick-ond-0irty FICIEFEY Prograrmmer

+1E- 14 +5Y
Iz RAT- 15
s RAO- 17
Rt osCi-18
tocle oscetld
e voo-t
e RE7 o
g FE1 EE& 1 —= i00n
o RES\ 10
RE: EE4
1EF et H =
1k 1k
3
D=
2
Do

23

Forallel Port |

connections —

QANDD.TXT Brief description of the quick-and-dirty
programmer

QUICK-AND-DIRTY 16F84 PROGRAMMER

David Tait
david.tait@man.ac.uk
http://www.man.ac.uk/~mbhstd

If you have a source of +12V-14V and +5V available you can program 16F84s
with virtually no hardware. The schematic in gandd.pcx shows one possible
setup. Thisismore or less the simplest circuit possible. In one design

I've seen (Mark Cox's BLOWPIC) things are made even more simple by
connecting the PIC directly to the parallel port but the 1k resistors add a

little protection (the values are not critical but don't use less than 1Kk).

Adding a few more components will make things alot more convenient (see
topic02.zip in my PIC archive for amore elaborate version; or, if

| ever find time to document it, my hardware for programming 16F84s
in-circuit viathe PC serial port). The quick-and-dirty circuit has several
limitations and one very big plus point: it should only take afew minutes

to lash the thing together. The hardware is usable with the pp V-0.5

software described in pp.txt and program.txt but, because there is no way of
reading the PIC, pp must be run with the -n switch and the PIC can't be
dumped or verified. One other drawback with this setup is that program
memory and data memory can't be programmed together. Using a hex file with
both program and data memory specified will only give correct results

for program memory. If thisis a problem the hex utilitiesin pichex01.zip
(from my PIC archive) can be used to split the hex file so that each area

can be programmed separately. As most PIC applications don't really need
the data memory to be programmed it's not likely to be a major limitation
in practice.

Although they were simply meant as Exemplos of how to customise pp the
files mypp.bat and mypp.pif are in fact ready to use with the hardware
described in gandd.pcx. To use the quick-and-dirty programmer: insert a
PIC (any of the 16x8x family); then, making sure the switch is closed, turn
on the power supplies; run mypp with acommand line of the form:

mypp [-xyz] prog.hex

where -xyz is an optional set of valid pp switches excluding -! or -s

and prog.hex is the name of the hex file to be downloaded (using

mypp rather than pp itself ensures that the software uses the correct setup,

i.e. ppsetup=3, and that the -n switch is specified); when pp asks you to

"Insert PIC ..." open the switch and hit any key (or control-C to abort);

when pp exits close the switch, turn off the supplies and remove the PIC.

Y ou can run mypp from a Windows DOS box or drag mypp.pif onto a Windows
folder for lazy "double-click" execution (you'll need to use the Windows PIF
editor to set the appropriate command line though).

If you add another single-pole double-throw switch wired so that it selects
whether the /IMCLR resistor is connected to +12V-14V (as shown) or to +5V
you get a crude form of in-circuit programmer. Thisis roughly speaking how
Derren Crome's Everyday Practical Electronics setup works. When the new
switchisin the +5V position the existing switch either resets the PIC

(closed position) or lets it run (open position). Of course, for the PIC to

do anything useful you'll need to add oscillator components and make
connections to some of the remaining port pins (as RB6 and RB7 are used for
programming they are unavailable). Y ou could try this out using the relevant
bits of the setup shown in test.pcx. To program/reprogram the PIC you should
first close the reset switch and select the +12V-14V supply with the other
switch; then run mypp with whatever else you need on the command line
(mypp walk.hex for Exemplo); when pp asks you to "Insert PIC ..." open the
reset switch and hit akey; when pp exits close the reset switch and reselect
the +5V supply; finally, open the reset switch at which point the PIC should
start running. Sounds complicated but you'll soon get the hang of it:

reset closed - select +12V-14V - reset open - reset closed - select +5V -

reset open. (Adding a couple of transistors as described in topic02.zip
automates these steps.) Build everything on a solderless breadboard and

you don't really need the switches at all as you can get the same effect

by moving a couple of wires about.

If you don't have power supplies available you'll need afew more components
to get you going. There are severa options: onethat | hesitate to mention
isto steal the supplies from your PC via a spare floppy disk power connector

- do thisat your own risk (and therisk is considerable!); use a regul ated

12V supply (12V battery or 8 AA batteries or whatever) and a 7805 regulator
plus a couple of decoupling capacitors to get +5V; use the power supply parts
of the programmer shown in pp.pcx together with an inexpensive "battery
eliminator" on its 12V setting (which will typically produce about 16V-17V
so don't be tempted to omit the 78L 12 regulator); use aregulated +5V supply
plus a couple of small 9V (PP3) batteries in seriesinstead of the +12V-14V
supply and connect a 12V zener diode from /MCLR to ground; use a regulated
+5V supply and a DC-DC converter (one of the 8-pin Maxim chips for Exemplo)
to get +12V; you get theidea...

Have fun.

V-0.3 20 April 1998

TEST.PCX Simple 16C84 (or 16F84) test circuit (just connect
one
LED for an even simpler circuit)

_.f= > a
[I] R 11 [I] RS
45y 1k é_ = =rXIn i? 417
— g (i1 RADF ¢
— o OSCL—=
_— —53 MCLRE 0scer "
o L VOO
_— 7 REQ FEf 1z
g FE1 REE- 11 i e
3 MBS FEIFls T 2p —T 100n
RES FE%-
1624

R2

Hm
170R || 470k

le 0e

03

WALK.ASM
circuit

PIC "LED walking" program to exercise the test

; WALK.ASM

; To use this program connect four LEDs from each of RB0-RB3 to ground
; viafour 470 ohmresistors. The LEDs areilluminated one at timein

; ato-and-fro pattern.

; Theillumination rate is more or less independent of the PIC clock

; frequency and configuration athough this program assumes an RC

; oscillator. The programincludesthe CONFIG, _ IDLOCS and DE
; directives (mostly just to show how they can be used). The program

; can be used unchanged on any 16X8X device.

LIST P=16C84

ERRORLEVEL -302 ;SUPPRESSBANK SELECTION MESSAGES
__CONFIG 3FF7H ;RC OSC, WATCHDOG

__IDLOCS 1234

PORTB EQU 6
TRISB EQU 86H
OPTREG EQU 81H
STATUS EQU 3
CARRY EQU 0

RPO EQU 5
MSB EQU 3 ‘BIT POSITION OF LEFTMOST LED
CLRF PORTB ‘ALL LEDS OFF
BSF STATUSRPO ;SELECT REGISTER BANK 1
CLRF TRISB "SET PORTB TO ALL OUTPUTS
MOVLW OAH
MOVWF OPTREG :ASSIGN PRESCALER (1:4) TOWDT

BCF STATUSRPO ;SELECT REGISTER BANK O
INCF PORTB,F ;TURN ON RIGHTMOST LED
BCF STATUSCARRY ;CLEAR CARRY

LEFT SLEEP SWAIT FORWDT TIMEOUT
RLF PORTB,F ;TURN ON LED TO LEFT
BTFSS PORTB,MSB ;REACHED LEFTMOST?
GOTO LEFT ;LOOP IF NOT

RIGHT SLEEP SWAIT FORWDT TIMEOUT
RRF PORTB,F ;TURN ON LED TO RIGHT
BTFSS PORTB,0 ;REACHED RIGHTMOST?

GOTO RIGHT :LOOPIF NOT
GOTO LEFT .START NEW CYCLE
" ORG 2100H

DE "Copyright (C) 1996 David Tait"
END

WALK.HEX Hex file produced by MPASM from WALK.ASM

:100000008601831686010A 3081008312860A 031056
:100010006300860D861D08286300860C061C0OC28CC
:020020000828AE

:084000000100020003000400AE

:02400E00F73F7A
:1042000043006F0070007900720069006700680069
:1042100074002000280043002900200031003900EC
:104220003900360020004400610076006900640017
:0A42300020005400610069007400D2

:00000001FF

MYPP.BAT Batch fileto run PP (customise this for your own
setup;

asit standsit can be used with the QANDD.PCX hardware

and you can use MY PP WALK.HEX to download
WALK.HEX to a

PIC with this hardware)

MYPP.PIF Usethisto run the software from Windows (you'll
need
to use the PIF editor to customise it for yourself;
asit stands it assumes the software isin the directory
CAWORK\NEW\PIC84V 05 and will try to download
WALK.HEX
using MY PP.BAT; the font used can be changed when the
PIF file opens the window)

Note: the * .PCX files can be viewed with the Windows Paintbrush
program.

Programming the PIC16F84

PIC MICROCONTROLLERS

When studying the PIC series of microcontrollers, the first thing to realize is that the architecture is
completely different from anything you are probably used to. This makes understanding the PIC quite
confusing at first. You are probably familiar with the spinal cord type of computer with memory, cpu and
perpheria chips hooked in parallel to the same data and address bus. The PIC chips have two separate 'data
busses, one for instructions and one for everything else. Instructions are essentially in ROM and dedicate the
microcontroller to doing one task. Thereis very little RAM, afew dozen bytes, and thisis reserved for
variables operated on by the program. There is also very little 'data storage, again afew dozen bytes, and this
isin EEPROM which is slow and clumsy to change.

TYPESOF PIC's:

There are adozen or so I/O pins on the PIC which can be configured as inputs or outputs. When outputs, they
have to strength to drive LED's directly. A couple of the I/O pins are used to program the internal ROM
serialy with an external programmer. These are the OTP, (One Time Programmable), chips. There are also
similar chips with UV erasable EPROM's used for prototyping at about three times the price. Then thereis
one series that is of special interest to the hobbyist, the 16F84, (C84,83), chips which have electrically
reprogramable EEPROM memory for instructions. These can be reprogrammed hundreds of times. There
have been many programmers designed for this series, one of the simplist appeared in the Sept. '98 issue of
‘Electronic Now'.

ROM INSTRUCTION MEMORY::

In the 16F84 instructions are 14 bits wide and stored in EEPROM. There is a maximum of 1024 of these. It is
impossible to modify these instructions except through external programming. Y ou can't have self modifying
code. When the chip is reset, a program counter is set to zero and instructions are executed from there. The
program is retained when power is removed from the chip.

RAM MEMORY:

Besides the 14 bit program bus there is another 8 bit data bus in the PIC connected to registers, ports, timer
etc. There are 80 RAM locations in the 16F84. RAM iswhere you put your variables. The only way to change
these RAM locationsis through instructions. Y ou don't load RAM from outside as in a ‘regular' computer.
The information in RAM disappears when power is removed. Thefirst 12 RAM locations, ($00 - $0B), have
internal registers mapped to them. Changing these locations with instructions changes the corresponding
registers. Microchip calls RAM locations files or ‘registers and uses the symbol 'f' when referring to them.
The remaining 68 locations can be used for your variables. Microchip calls the first 12 locations special
function registers and the remaining 68 general purpose registers.

BANKED RAM MEMORY:

Five special function registers are not among the first twelve addresses, not even among the 80 . Because of
something called 'banking' you have to set a bit in the byte at RAM location 3 to reach them. Thislocation is
called STATUS and the bit, (bit 5), is called RPO. If RPO is zero you arein bank 0, if itis 1 you are in bank 1.
For your own variables it doesn't matter which bank is in use because they are mapped to both banks. For
some of thefirst 12 locations it does matter. Seven of the 12 are mapped to both banks but five are not; so
location 5 for Exemplo has two meanings depending on RPO. If RPO is clear, (bank 0), location 5 refersto
the dataon PORT A. IF RPOis set, (bank 1), location 5 refers to the direction register TRISA that tells
which bits of PORTA are inputs and which are outputs.

Much of this complication can be avoided by using two instructions that Microchip indicates it might not
support in future products. The TRIS instruction can be used to set the port direction registers and OPTION
can be used to set the OPTION register which deals mainly with timer operations. If you port your code to
future Microchip processors that don't support these instructions, you will probably want to rewrite the code
for some other reason anyway.

EEPROM MEMORY:

Thereisathird type of memory in the 16F84, 64 bytes of electrically reprogrammable memory, (8 bit). This
could be used to hold values you would like to remember when the power is turned off. There are a couple of
difficulties. First, the memory is not directly addressable; you have to work indirectly through four of the
special function registers. Secondly, it takes afew hundredths of a second to 'burn’ the information in so it
isn't real fast memory like RAM. This memory can aso be burned in when you burn in program memory.

INSTRUCTIONS:

The small instruction set, (37 instructions), and the 14 bit size of instructions lead to a number of
compromises. For one thing you can't have two registers specified in a single instruction. Each register takes 7
bits to specify its address, but you also have to specify the instruction number and what to do. The solution is
to run amost everything through 'W' or working register which isinternal to the processor and doesn't have
an address. A register to register transfer would take two instructions. Suppose you had a pattern of LED
segments to be it in the variable PATTERN and want to move it to PORTB to light the segments:

MOVF PATTERN, W ; copy the contents of PATTERN into the
wor ki ng
; register
MOV PORTB ; copy the contents of Winto Port B

Thefirst instruction is of the form MOV f,d which moves the register 'f' to the destination 'd’, (‘W' in this
case). The second instruction simply moves whatever isin 'W' into the register 'f', (MOVWEF, f). PATTERN
remains unchanged in the first instruction and W remains unchanged in the second. Maybe it is more like a
copy than a move.
Y ou might think you could get away with one instruction with literals. Literals ,(k), are 8 bits (0-255).
Instructions with literals have no room to specify aregister, you must use 'W'. Loading a register with aliteral
also takes two instructions:
MOVLW $AA ; put the pattern 10101010 into W
MOV PATTERN ; put Winto the register PATTERN
The same applies when literals are used in addition, subtraction and the logical functions AND, IOR
,(inclusive OR) and XOR ,(exclusive OR); all involve two instructions:
MOVLW k ; move literal into "W
SUBWF f,d ; put the result of subtracting Wfromf
into d
; d could be either Wor f
; if it's Wthen f is not changed
; if it's f then Wis unaffected
Suppose we wanted to zero out the lower nibble of PATTERN:

MOVLW $FO ; set up nask
ANDWF PATTERN, f ; result of PATTERN AND $FO0 is placed in
PATTERN

; note that the destination could be Wif we
; want the changed pattern to end up there
IF the value to be changed is aready in W and the destination is W, a single instruction will work: ADDLW
k, SUBLW k, ANDLW k, IORLW k and XORLW k.
Single operand instructions are easy to understand:

CLRF f ; set all bits in register f to zero, (clear register f)
CLRW ; set all bits in register Wto zero, (clear working
register)

BCF f,b ; set bit binregister f to zero, (bit clear bit b in f)
BSF f,b ; set bit binregister f to one, (bit set bit bin f)

THINGSTO WATCH:

Small errors are easy to make and can cause hours of wasted time. Here are some that can cause problems:
Many instructionsin a program are MOV instructions and involve 'W'. It is very easy to confuse loading a
register with W and loading W with aregister.

MOV f ; WIS MOVED TO THE REG STER f, (f is
changed)

MOVF f, W ; THE REG STER f IS MOVED TOW (Wis
changed)

MOVF f, f ; THE REG STER f IS MOVED TO | TSELF
; f is not changed but flags nay be set
Note that MOVWEF isthe only 'WF" instruction that doesn't have a choice of destination. It's aways 'f'. The
other 'WF' instructions are ADDWF, SUBWF, ANDWF, SWAPWF, IORWF & XORWEF. In all of these
cases one of 'W' or 'f' will be changed and the other not according to the destination. Also remember in
SUBWEF that 'W' is subtracted from 'f'. Other instructions where the destination is changed include:

INC f,d ; put the value of register f + 1 in either Wor f

DEC f,d ; put the value of register f - 1 in either Wor f

cow f,d ; put the result of toggling all bits of f in destination
d

SWAP f,d ; put the result of swapping nibbles inf into d

RLF f,d ; the result of rotating f left thru carry goes into d

RRF f,d ; the result of rotating f right thru carry goes into d

If the destination is 'W' then only 'W' is affected; the original register remains the same.

IN SUBLW k, 'W' is subtracted from the literal 'k'.

It is easy to code GOTO when you meant to code CALL and vice-versa. Y ou might think that this would
cause your program to lock up but many times it just makes it act strangely instead.

Beware of using the same registers in two different routines, especially if one calls the other. For Exemplo if
you use TEMP in atiming loop and then use TEMP in a subroutine that calls the timing loop, you might
overlook the fact that the timing loop is changing TEMP.

Therotate instructions, (RLF,RRF), are rotates through carry so carry has to be set up prior to the instruction
and rotates into the low or high order bit. Likewise the hi or low order bit rotates into carry.

FLOW CONTROL:

Normally a program will start with instruction 0 and skip to the next as each is executed. Instructions which
change this involve a program counter. 'GOTO 666' would set the program counter to 666 and the instruction
at location 666 would be executed next. 'CALL 666' on the other hand would first push the next location on
the stack and then set the program counter to 666. | nstructions after 666 would be executed until a RETURN
,RETLW Kk or RETIE instruction is encountered:

RETURN - return fromcall, location of next instruction is

popped fromthe stack and put into the program counter

RETLW k - as RETURN but literal k is also placed into W

RETIE - as RETURN but interrupts are al so enabl ed
The stack consists of eight words and is circular, after the eighth word it rolls over to thefirst. Calls can be
nested only eight deep. There is no push or pop instruction to access the stack directly.
There are four other flow instructions ,(beside CALL and GOTO), which might be called 'skip it'
instructions:

INCFSZ f,d - put f + 1 into either Wor f. skips over the next

instruction if the result of the increnment is

zero
DECFSZ f,d - put f - 1 into either Wor f. skips over the next
instruction if the result of the decrenment is
zero
BTFSC f,b - tests bit b of register f, skip next instruction if
the bit is zero (bit test skip clear). doesn't
change bit
BTFSS f,b - tests bit b of register f, skip next instruction if
the bit is one (bit test skip set). doesn't
change bit

INPUT/OUTPUT PORTS:

The 16F84 has 13 pins that can be individually configured as either inputs or outputs. They a divided into
PORTA, (5 bits), and PORTB, (8 bits). The direction of each bit is determined by the bitsin the
corresponding direction registers TRISA and TRISB. A zero means the bit will be an output, a 1 meansinput.
To set up PORTB with alternating inputs and outputs:

MOVLW $AA ; port pattern '10101010

TRIS TRI SB ; Wis placed into register TRI SB
Certain port pins are also hooked to other functions of the processor. The high 4 bits of PORTB can be used
asinterrupt pins when they are programmed as inputs. The high bit of PORTA isalso used as an external
clock input for the counter/timer. Bit 0 of PORTB (RBO/INT) can be used for an external interrupt.

TIMING:

Often you wish to simply sit in aloop and wait for a specified period of time. Each instruction takes four
clock cycles or 1 microsecond for a4 Mhz crystal unless the program counter has to be changed, (flow
control instruction). 2 microseconds are required for program branches. Here is a delay subroutine which will
give al millisecond delay for a4 Mhz clock:

MSEC1 MOVLW $F9 ; allow for 4 mcrosec overhead. .
NOP ; (2 for CALL)
M CRM ADDLW $FF ; subtract 1 fromWwW
BTFSS STATUS, Z ; skip when you reach zero
GOTO M CRO4 ; nmore | oops
RETURN

Some comments about the code:

? Each loop takes 4 microseconds, ADDLW takes 1, BTFSS takes 1 and GOTO takes 2 microseconds.
When the skip istaken it isalso 4.

? SUBLW 1 subtracts W from one, not the reverse. To subract one from W you add the two's
compliment of 1 which is $FF.

? You are testing the zero hit, (Z) in the STATUS register which will be set when the subtraction
resultsin zero.

? Thebit test takes 1 microcsecond unless the skip is taken, in which case it takes 2 microseconds.

? You could call MICRO4 directly with the number of 4 microsec loopsin W for delaysin multiples
of 4 microseconds. Remember that the call itself is 2 microseconds. Don't enter with 0 in W or you
get a 256 microsec delay.

? Notice that the subroutine does not use aregister, just "'W'.

For longer time periods, you are going to have to use aregister. The following routine is entered with the
number of milliseconds delay in 'W'. Up to a quarter of asecond delays are possible (1 - 255 msec):

NVSEC MOVWF CNTMSEC ; Wto nmsec count register
MSECLOOP MOVLW $F8 ; allow for 8 microsec overhead
CALL M CROU4 ; 248 * 4 + 2 = 994 here
NOP ; make rest of loop ...
NOP ; add up to 6 microseconds
DECFSZ CNTMSEC, f ; decrement count, skip when zero
GOTO MSECLOCOP ; more | oops
RETURN

COUNTER/TIMER:

Thereisainternal 8 bit counter/timer that sets aflag when it rolls over from 255 to zero. This can be used as a
counter or timer. As atimer, it is connected to the internal clock and increments at the clock frequency
divided by four. A flag can be polled to tell when timeis up. The timer can also be set up to generate an
interrupt when this happens. It wouldn't take long to count al the way up at 1 Mhz so a programmable
‘prescaler' can be used. The prescaler can be set to give output pulses at ratios of 1:2,1:4,1:8 etc. up to 1:256,
extending the timeout up to the tens of milliseconds range for a4 Mhz clock.

In counter mode, input comes from pulses applied externally at the high bit of Port A. The prescaler can be
inserted to count every second, forth, eighth etc. pulse. The input pin can aso be set to count on either rising
or faling transitions.

Various bitsin the OPTION register are used to set up the counter/timer. The low three bits, (0-2), set the
prescaler ratio. Bit 3 determines whether the prescaler is assigned to timer 0 or the watchdog timer. Only one
can use the prescaler at any onetime. Bit 5 decidesif TMRO register is used as atimer or is used as a counter
of pulsesfrom Port A bit 4, (RA4).

INTERRUPTS:

Sometimes you can't afford to just sit and wait for aflag to go high. The solution is to set up the timer to
generate an interrupt. When the timer rolls over aflag is set, the address of the next operation is pushed on the
stack and the program goes to location 4 and continues from there. Thisis usually aGOTO to the interrupt
routine.
The interrupt routine does whatever you want to happen each time the interrupt occurs. Further interrupts are
disabled when the interrupt starts. Y ou are responsible for clearing the flag and re-enabling interrupts. RETIE
pulls the saved instruction address off the stack and enables interrupts.
Three other situations can be set up to cause interrupts:

1. PORTB, hit 0,(RBO/INT), can be used as an external interrupt pin. A rising or falling edge can be

used.

2. A change of state of any of the high 4 bits of PORTB.

3. A write to data EEPROM completion.
The enable and flag bits are the key to interrupts on the PIC. Each of these four situations has an associated
flag bit and an enable bit. The flag bit set means the situation has happened. Y ou have to reset these. The
enable bit set means the setting of this particular flag can cause an interrupt. If in addition you want the
interrupt to cause ajump to location 4, a Global Interrupt Enable, (GIE), flag must be set before the individual
flag bit goes high. GIE is cleared at the interrupt condition and prevents further interrupts. RETIE resets GIE.

SLEEP MODE:

Sleep mode is alow current mode used to save battery life. The pic can draw as little as 50 microampsin
sleep mode. The mode is started with the SLEEP instruction and can be ended by one of the following:
1. externa reset on MCLR pin.
2. Watchdog timeout (if enabled).
3. Interrupt from:
1. register B port change.
2. RBO/INT pin.
3. EEPROM write completion.
While in sleep mode instruction execution is suspended. In particular, timer 0 is not incrementing. Upon
wakeup from sleep instruction exection continues from the stopped point or if GIE is set, instruction continues
from location 4.

WATCHDOG TIMER:

The watchdog timer is independent of the PIC's internal clock. It times out from a CLRWDT ,(Clear
Watchdog Timer), instruction in roughly 18 milliseconds. It is not very accurate. The prescaler can be
assigned to the WDT, giving time out periods of up to a couple of seconds. The purpose of the WDT in
normal useisto keep the PIC from going off into never-never land without the ability to recover. At timeout,
aflagiscleared, (TO), the program counter is reset to 0000 and the program starts again. To prevent the reset,
you to build a CLRWDT, (Clear Watch Dog Timer), instructions into your program before the timeout
ocCurs.

EEPROM:

Reading or writing to data memory, (EEPROM) requires using magic series of instructions involving the
registers EEADR, EEDATA, EECON1 and EECON2. EECON1 and EECO2 are in bank 1 so you have to do
some bank switching.

ASCII MESSAGES:

Suppose you had the message "Hello World!" and wanted send it out as ASCII charactersto a PC COM port.
Data memory is scarce and hard to use so we put the message in program memory. How do we accessit? We
use atable. You load 'W' with the offset of the character you want and call MSGTXT. A Owill return'H', al
will return ‘e etc:

MSGTXT ADDWF PCL, f ; offset added to PCL
RETLW $48 o 'H
RETLW $65 ;e
RETLW $6C A
RETLW $6C S
RETLW $6F ;'o

RETLW $20
RETLW $57
RETLW $6F
RETLW $72
RETLW $6C
RETLW $64
RETLW $21
RETLW $0D
RETLW $0A
RETLW $00

vy
; carriage return
; line feed

; indicates end

To output a character string you set up aregister to point to theinitial character, (MSGPTR), and repeatedly
call MSGTXT, incrementing the pointer each time. We have reached the end of the string when a zero is
returned. The routine is entered with the offset of the first character in 'W'":

QUTMSG
M5GELO0P

MOV MSGPTR ;
MOVF MSGPTR, W
CALL MSGTXT ;
ADDLW 0 ;
BTFSC STATUS, Z ;
RETURN ;
CALL OUTCH ;
I NCF MSGPTR, f
GOTO MS@E.OOP ;

OUTPUT ASCII CHARACTERS:

put 'W into nessage pointer
put the offset in "W
returns ASCI|I character in 'W

sets the zero flag if W= 0
skip if zero bit not set
finished if W=0

out put the character

poi nt at next

nore characters

Serial output of charactersis just a matter of making an output go high or low at the proper times. It is
normally high, and going low signals a start bit. At 4800 baud the bit time would be 1/4800 = 208
microseconds. Eight data bits, each one bit period, follow the start bit. A high level for longer than one bit
period signifies stop bit/s. The bits are sent Least Significant Bit first. Sampling occurs midway in the bit

period to determineif the bitisal or O.

RS232 high is-3V or lower, low is +3V or greater. You can actualy get away with +5V for the low and OV
for the high if you keep the line short. Notice that thisis flipped from what you might expect. We can use
MICRO4 and 52 X 4 microsec loops for 1 bit time at 4800 baud. Actually 12 microseconds are used in
overhead so we use 49 as the count. The subroutine is entered with the character to be output in "W'. Port A bit

2, (pin 1), is use as output:
QUTCH MOWWF TXREG

MOVLW 8

MOWAF BI TS

BSF PORTA, 2

MOVLW $31

CALL M CRM

RRF TXREG, f

BTFSC STATUS, C

TXLOOP

| ow)

GOTO CLRBI T
BSF PORTA, 2
GOTO TESTDONE
BCF PORTA, 2
NOP

DECFSZ BITS, f
GOTO TXLOOP
MOVLW $34
CALL M CRM
BCF PORTA, 2
MOVLW $68
CALL M CRM
RETURN

CLRBI T

TESTDONE

; put Winto transmt
; eight bits of data
; a counter for bits
; start bit (flipped renenber),

; 49 decinmal, delay tine

; wait 49 x 4 = 196 nicroseconds
; roll rightnost bit into carry
; if carry O want to set bit, (a

regi ster

RA2

; else clear bit, (a high)

; ¥V on pin 1 (RA2)

; are we finished?

; OV on pin 1l (RA2)

; to make both options 12 mi cosec

; 1 less data bit, skip when zero

; more bits left, delay for this one
; full 208 microsec this tinme

; delay for last data bit

; OV, (a high) for stop bits

; decimal 104 delay for 2 stop bits

A PIC TRANSMITTER:

We now have amost all the code necessary to program a PIC to transmit the message 'Hello Word'. The
MAIN routine might look like this:

MAI N MOVLW O ; all port bit outputs
TRI'S TRI SA ; on port A
TRIS TRI SB ; and port B
CLRF PORTA ; RA2 is 0 (RS232 high)
MOVLW $32 ; delay for 50 nsec
CALL NMSEC ; so no glitches interfere
MOVLW 0O ; this is offset of nessage
CALL OUTMSG ; output the message
ENDLESS GOTO ENDLESS ; go into an endl ess | oop

Some comments about the code:

? All bits of all ports are set to outputs. Unconnected port bits should never be set up as inputs. When
floating, CMOS inputs can flip rapidly between states and cause excessive current draw, heating and
even damaging the PIC.

? The offset of the message is the address of the first character minus the address of MSGTXT minus
1. Other messages could be added to the table, everything has to stay in the first 256 addresses
though to be reached by PCL, (program counter [ow).

? The order of subroutines doesn't matter; the main routine has to be the first thing reached from
address 0000 though. Either it comes first or you have a'GOTO MAIN' instruction at 0000.

? The GOTO at 0000 is agood idea because it can skip over location 4 which could be reserved for a
GOTO to an interrupt subroutine.

HOOKING IT UP:

The actual connections to a PIC16F84 are few:

? pinl: RA2 - asix foot or lesswireto pin 2 (RX) of aDB9 female socket. If aDB25 isused, itispin
3.

? pin4: MCLR - pulled high to +5V with afew K resistor. Y ou can also add a short wire that can be
touched to ground to reset the PIC.

? pin5: 0V - (gnd), the negative side of the power supply. Also going to ground is another six foot or
less wire going to pin 5 of the DB9 or pin 7 of aDB25 if used instead.

? pin14: +5V - the positive side of the power supply. A .1 mfd capacitor from here to ground wouldn't
hurt but isn't necessary.

? pin 15: OSC1 - one outer pin of a4Mz ceramic resonator with caps.

? pin 16: OSC2 - the other outer pin of the ceramic resonator. The center pin goes to ground.

CONFIGURATION MEMORY

Y our programmer probably inputs information to be programmed into the PIC in Intel Hex Format
(INHX8S). Filesin thisformat have a'.HEX' extension. If you look at one of these files you will see lines that
start with :'. The first 9 characters of the line tell the number of bytes of data and where to put it in memory.
Various different addresses are assigned to the program memory, the EEPOM memory or what is called the
configuration word.

Various bits in the configuration word tell things like what type of oscillator is being used and whether the
watchdog timer is enabled. Some programming software allows you to input this information as command
line switches when you run the program. Others expect the information to aready be in the . HEX file. In the
case the PIC transmitter program, the oscillator type should be set to XT.

PROGRAMMING THE PIC

| use either the NOPPP programmer by Michael Covington from 'Electronics Now':
http://mindspring.com/~covington/noppp/noppp.zip or the TOPIC' programmer designed by David Tait:
http://www.man.ac.uk/~mbhstdij/files/'topic03.zip. To produce the .HEX' files, | use an assembler | wrote
called 'Picbuild84': http://www.picpoint.com/download/projects/picbuild.zip. (local copy). Since Picbuild
doesn't put configuration datain the HEX files and NOPPP software doesn't allow command line switches for
this, | use the TOPIC software which does and works for both programmers. I've included the files
'HELLO.HEX" and 'HEL L O.F84' for use with PicBuild84. Use the -x switch with TOPIC.

RUNNING THE PROGRAM

Fire up your favorite terminal program. Set it for 4800 baud, 8 bits, no parity and plug the connector from the
PIC into the COM port. When you power the PIC, 'Hello World!" should be printed on the screen. Touching
the wire from MCLR to ground briefly should print it again. If you don't have aterminal program and are
running DOS you could enter the following QuickBasic program and run it instead:

CLS
OPEN " COWR: 4800, N, 8, 2, CDO, CSO, DSO, OP0" FOR | NPUT AS #1
DO
PRI NT | NPUT$(1, #1);
LOCP

A program that prints out a single message over and over may be instructive but it isn't realy very useful.
There are many input devices that could be connected to the PIC. Serial devices are especially convenient.
One such device is the Dallas Semiconductor DS1820 1 wire Digital Thermometer

http://www.dal semi.com/DocControl/PDFs/1820.pdf. It is available from Newark http://www.newark.com for
about $6.

DS1820

The DS1820 is a computer, temperature sensor and serial port in athree pin package. It looks like a transistor
and isonly alittle larger. Thereis a power pin, aground and asingle data I/O pin. The I/O pin is connected to
asingle line bus which can support multiple DS1820's. Only the simple situation with a single unit connected
to a PIC will be discussed.
The busis pulled high to +5V through a 4.7K resistor. Either the PIC or the 1820 can pull thisline low. The
PIC 1/O pinis set to output and the port bit is set to 0 to pull the bus low. Changing the pin to input lets the
resistor pull the line high. All timing originates with the PIC. Data bits are transferred in time slots initiated
when the PIC pulls the bus down. If the busis released,(1/O pin made input), and allowed to go high for the
rest of thetime slot, a1 bit is sent. If the bus remains low it is a zero bit transfer, PIC to 1820. In either case,
the bus has to be high at the end of the time slot and remain high for at least 1 microsecond before the next
low. The dot must be at least 60 microseconds long. Bit timing is not critical asit iswith RS232. Time slots
can be any reasonable length over the minimum.
What about transfers the other way, 1820 to PIC? First, you have to send the 1820 a command to read it's
scratchpad memory. The PIC must then generate read time slots to get the data bits out. The PIC pulls the bus
low as before to initiate the time slot and quickly releases it. Data from the 1820 will be valid only for the first
15 microseconds. The read should take place toward the end of thisinterval. If the 1820 is pulling the bus low
you receive a0 hit, if notitisal bit.
Any segquence of commands given to the 1820 by the PIC has to be preceded by a reset pulse and the address
protocol, (64 bits). The reset pulseis alow from the PIC lasting about 600 microseconds followed by roughly
a 400 microsecond period where the PIC has released the bus and can read a response ‘presence pulse' from
the 1820, (low), indicating everything is O.K. We will ignore this return pulse an assume everything is O.K.
Commands given the 1820 include;
? $BE - Read contents of scratchpad. Up to 9 bytes can be read. We are interested in only the first two
which contain the temperature. Reading can be interrupted with areset pulse.
? $CC - Skip ROM - skip protocol for telling which device isto be addressed. Thereis only one slave
device on the bus, (DS1820). This saves having to send out the 64 bit ROM code after each reset.
? $44 - Begin temperature conversion. Read the 1820 after this until a $FF is returned, indicating
conversion is complete or wait 500 msec which is the maximum conversion time.
The temperature value is held in the first two bytes of the scratchpad memory. First to come out is the
magnitude, the second is either $00 or $FF and represents the sign, ($FF is negative). The top 7 bits of the
magnitude hold an integer number in binary, (0-125 degrees C). The lowest bit indicatesif an additional 0.5 C
isto be tacked on, (1), or not, (0).
An additional complication is negative numbers. The unit goes to -55 degrees C, but negative numbers are
expressed in twos compliment form. Y ou have to change these by taking the compliment, (flipping all the
bits), and adding one to get the magnitude in normal form.

A 1WIRE PROGRAM

An outline of aprogram to read and send temperature would look like this:
1. Send reset pulse, $CC & $44 to start a conversion.
2. Wait 500 milliseconds for conversion to take place.

Send reset pulse, $CC & $BE to begin memory read.
Receive value and sign bytes and save them.
Send reset pulse to terminate read.
If sign is $FF then send - out RS232.
Convert integer magnitude to decimal and send out RS232.
Send a'.' out RS232.
. If LSB of valueis0 send a'0' else send '5' out RS232.
10. Send carriage return out RS232.
11. Delay until next reading.
12. Goto first step and repeat measurement.
The /O bit used is Port A bit 3. The lowest level 1 wire routines look like this:

©oOoNOU A~ W

MLHI BSF STATUS, RPO ; go to page 1
BSF TRISA, 3 ; make RA3 an input
BCF STATUS, RPO ; back to page O
RETURN ;. master 1 wire H
MLLO BCF PORTA, 3 ; port A bit 3 1low
BSF STATUS, RPO ; go to page 1
BCF TRISA 3 ; make port A, bit 3 an output
BCF STATUS, RPO ; back to page O
RETURN ; master 1 wire LO
SLOTLO CALL MLLO ; begin by taking RA3 | ow
GOTO DLY80 ; and remain | ow
SLOTHI CALL MLLO ; a quick ow on RA3
CALL MLHI ; return high right away
DLY80 MOVLW $14 ; decimal 20 x 4 = 80 m crosec
CALL M CROU4 ; del ay
CALL MLHI ; always end on high
RETURN
The routine for transmission of characters |ooks much like the routine used for RS232. In fact, we can use the
same registers:
TXBYTEL MOVWF TXREG ; put Winto transmt register
MOVLW 8 ; eight bits of data
MOVWAF BI TS ; a counter for bits
TX1LOOP RRF TXREG, f ; roll rightnost bit into carry
BTFSC STATUS, C ; if carry 0 want to send O
GOTO HI BI T1 ; else send 1 bit
CALL SLOTLO ; output low bit (RA3)
GOTO DONE1 ; are we finished?
HI BI T1 CALL SLOTHI ; output a high bit (RA3)
DONEL DECFSzZ BI TS, f ; 1 less data bit, skip when zero
GOTO TXBYTEL ; more bits left
RETURN
The receive routine includes the read time slot generated by the PIC:
RXBYTE1 MOVLW 8 ; eight bits of data
MOVWAF BI TS ; a counter for bits
RX1LOOP CALL MLLO ; a quick | ow pul se
CALL MLHI ; and back high
NOP ; waiting for about
NOP ; 14 m croseconds ...
NOP ; to elapse ...
NOP ; before readi ng RA3
BSF STATUS, C ; make carry a 1
BTFSS PORTA, 3 ; read RA3 skip if received a 1
BCF STATUS, C ; make carry a 0
RLF RXREG, f ; roll carry into RXREG LSB
DECFSzZ BI TS, f ; 1 less data bit, skip when zero

GOTO RXLOOP1 ; nmore bits left

RETURN
Thereset pulseis straightforward:

RESET CALL MLLO ;. make /O line | ow
MOVLW $96 : 150 x 4 = 600 m croseconds
CALL M CRO4 ; del ay
CALL MLHI ; and back high
MOVLW $64 : 100 x 4 = 400 m croseconds
CALL M CRO . del ay
RETURN

Except for the binary to decimal conversion routine, we now have almost all the code necessary to write a
program to use the DS1820 to read temperature and send it to the PC COM port. The files' DEGREES.HEX'
and 'DEGREES.F86' can be entered into PicBuild. A LED on RB1 is useto give aquick blink at each reading
indicating the unit is working. A normally open push button is connected between RB2 and ground to set up
the delay between readings.

SETTING THE READING INTERVAL

Numbers which represent the interval between readings are kept in EEPROM data memory locations 1-13.
They arethe total delay in seconds - 1. The measurement and transmit cycleis set to take 1 second by itself. |
usually program in the numbers 0,1,2,3,4,9,19,29,44,59,119,179 & 239. EEPROM location 0 holds a number
1 to 13 which points to one of these locations. To change this number you hold the button down while turning
the power on. This causes a GOTO to aroutine that putsa 1 in alocation 0 and then increments it each
second. The LED blinks once for each number. Y ou release the button when the desired number is reached.
The program then burns the pointer number into EEPROM location 0 and goes into an endless loop. Y ou
power down and when you power up again collection uses the delay interval pointed to. The push button is
connected to RB2. Port B can have weak pullups activated by clearing bit 7 of the OPTION register. This
saves having to add an external pullup resistor for the pin. All bitsin the OPTION register ar 1's at startup.

WIRING THE DS1820

The center pin of the DS1820 isthe I/O pin and is connected by awire to RA3, (pin 2), of the PIC. A 4.7K
resistor should be connected from pin 2 to +5 Volts. Looking down on the flat side of the DS1820, the ground
pin on the left iswired to ground. The pin on the right is connected to +5 volts. The cathode of aLED is
connected to ground and the anode is connected through a 1k resistor to RB1, (pin 7), of the PIC. Pin 8 of the
PIC, (RB2), is connected to a normally open push button, the other side is connected to ground.

RUNNING THE DEGREES PROGRAM

Connect the 9 pin socket to the COM port on the PC. Run aterminal program setting 4800 baud, 8 bits, no
parity and 2 stop bits. When the PIC is powered the temperature should appear, being updated according to
the delay time set in EEPROM. Put the DS1820 between your fingers and the temperature should go up.
If the time interval between pointsis not correct, you turn the unit off and hold the button down when you
power up. Hold the button until the proper number of flashes has occurred for the desired interval. Release the
button, turn the unit off and power up again to start collecting data.
Hereisa QuickBasic program to store readingsin afile. The fileis atext file with one reading per line. Y ou
should be able to read the file directly into a spreadsheet and graph the data: The program 'Graf Data will give
you a quick graph of the data on the screen.

' *** Take N readings, change to Deg F, and store in file ***

CLS
| NPUT "How many readings? ", readi ngs%
I NPUT "Fil ename for readings? ", filename$

OPEN " COwWR: 4800, N, 8, 2, CDO, CS0O, DS0, OP0" FOR | NPUT AS #1
IF filename$ <> "" THEN OPEN fil ename$ FOR OQUTPUT AS #2
count% =1
DO
I NPUT #1, tenp!
GOSUB ShowTenp
LOOP UNTIL count % > readi ngs%
IF filename$ <> "" THEN CLOSE #2
END

ShowTenp:
temp! = 9 * temp! / 5 + 32
PRI NT count% " - *“;
PRI NT USI NG " ###. # Deg F"'; tenp!
IF filename$ <> "" THEN PRI NT #2, USI NG "###. #"; tenp!
count% = count% + 1
RETURN
I've also included a Pascal program to take data, (NTEMP.EXE) if you don't want to go to the trouble of
loading QBasic. Notice how much extra code is necessary just to set up the COM port. COM2 is used by the
program but can be changed to COM1 by making the changes noted and recompiling.
Now we have a useful device, but not as useful asit could be. After al, you don't want to lug around a
computer just to measure temperature. We could use the EEPROM data memory in the PIC to collect data and
carry the unit to the PC and dump them, but data memory is pretty small. The answer lies in adding more
memory to the PIC and serial memory is definately the way to go. Adding a 8 pin 24C65 serial EEPROM
from Microchip gives us 8K bytes of additional memory. These cost about $3 from Digi-Key. Using seria
memory we can construct a reasonabl e temperature data logger.

24C65 MEM ORY

The 24C65 memory communicates with the PIC over a2 wire |2C bus. The two lines are SDA, (serial data),
and SCL, (serial clock). The PIC will act as the master and the memory a slave. The master provides the clock
signal and begins and terminates all transfers with start and stop signals. PIC and memory will both transmit
and recieve information over SDA. SDA hasto be pulled high with aresistor and the PIC pin hasto be set to
input to allow slavesto pull the line low, (like the DS1820 I/0O line). The clock line would normally have to
be the same but in this case there is only one master and one source of clock signal so it isn't necessary.
Information transfer occurs only when the clock is high:

? The status of data bitsis determined when the clock is high.

? A start condition occurs when SDA is taken low while SCL is high.

? A stop condition occurs when SDA is taken high while SCL is high.
Special care should be taken that SCL islow before any changes are made to SDA. Otherwise, it would be
interpreted as a start or stop condition. Assume SDA is connected to RA1 and SCL is connected to RAO. The
four most basic routines you need are:

? HIGH_SDA - Make Port A, bit 1 an input. SDA should not be made high by making the PIC an

output and setting it high. If aslave then brought SDA low, it would be a direct short.

? LOW_SDA - Make Port A, bit 1 an output and put a0 in PortA, 1.

? HIGH_SCL - make Port A, bit 0 a1, (previously set to output).

? LOW_SCL - make Port A, bit 0 a0.
Now routines using these four can be written. A start condition would look like this:

START CALL LOW SCL ; bring SCL | ow before a change to
SDA
CALL HHGH SDA ; SDA will start high
CALL HI GH_SCL ; now set up for information
transfer
CALL LOW SDA ; start: SDA goes |ow while SCL high
CALL LOW SCL ; clock back to where SDA can change
RETURN

Notice that the clock is left in a condition where changes to SDA won't be seen as start or stop conditions. The
code for a stop condition would be exactly the same except with the calls that change SDA reversed. The stop
condition leaves SDA high and the bus released.

Once the slave sees the start condition it expects data bits to come from the PIC. The PIC transfers data by
raising the clock for 5 microseconds or more and lowering it again. If SDA is high during thisperiod alis
transferred if it islow, a0. The PIC must also put out this clock pulse to receive data. It rel eases the bus
(HIGH_SDA), brings SCL high and examines SDA. A high SDA means a1 bit from memory, alow means a
0 hit. Clock lows should also last 5 microseconds or longer. This gives a maximum bit transfer rate of

100K bits/s. Bit timing isn't important as long asit isn't too fast. The critical factor iswhat takes place on the
SDA linewhen the SCL lineishigh .

The basic unit of transfer is the byte with an acknowledgement required after each byte is transferred. The
PIC sends 8 bits, releases the bus and sends out a 9th clock pulse. If memory responds by pulling SDA low it
means everything is O.K. The acknowledgement doesn't have to be acted upon but the clock pulse must be

sent. We call this response from memory NACK. Likewise when the PIC is receiving bytes from memory,
memory expects an acknowledgement pulse, (SDA high & clock pulse), back after each byte. We call this
pulse from the PIC ACK.
Unlike the case with the DS1820, there is no way to get around sending out a slave address after each start
condition. The device addressis contained in the high 7 bits of a control byte. The lowest bit of the bytetells
if the operation isto be aread, (1), of the slave or awrite to the slave, (0).
Transmission and reception of bytes of data over the 2 wire 12C is done by the routines 'TXBY TE2' and
'RXBYTEZ2 in the program 'TLOGGER'. Notice that RLF is used to transfer bytes into carry because the most
significant bit comesfirst in this case.
Writing a byte to arandom address in memory requires sending a control byte and address before the actual
byte to be saved. It goes like this:

? Create start condition
Send contol bytewith LSB =0
Do NACK
Send high byte of address
Do NACK
Send low byte of address
Do NACK
Send data byte to be written
Do NACK
Create stop condition

? Wait 25 milliseconds for byte to 'burn in'
We use this procedure to send both the value byte and sign byte from the DS1820 to memory. We also send
the 7th and 8th byte ouput by the 1820 which will be used to break down the tenths of a degree of the reading.
Four bytes are saved for each temperature reading. We start at memory location zero and increment the
address after each is sent.
Reading a byte from memory also requires sending a start condition, control byte and address bytes to
memory. Thefirst 7 steps would be the same as for awrite. Then a new start condition is created and a control
byte with LSB =1 is sent. Only then can the PIC receive a byte by sending out clock pulses and testing SDA
while the clock is high. The PIC must then switch into output mode and send an acknowledge pulse indicating
the byte has been received, (ACK). Fortunately a sequential read can follow by continuing to read another
byte after each ACK. When you are finished you produce a NACK instead of ACK and then produce a stop
condition.
We either have to transfer a fixed amount of data or somehow remember how much data was saved. The latter
approach is taken by requiring that a button be pushed before the power is turned off. At the button press, the
program jumps to the code at FINISH which saves the current memory address to data EEPROM locations
$OE and $OF. These two locations provide the first two bytes sent to the PC COM port when the 24C65
memory is dumped.

ADDING 24C65 MEM ORY

An eight pin DIP socket is heed with pins connected as follows:
? 1,2,3/4,7 - Ground

NN) N) N N) N

? 8-+5Volts
? 5-SDA linegoesto PIC pin 18, (RA1). There must also be a 10K resistor from pin 18 to +5 volts to
pull SDA high.

? 6-SCL linegoesto PIC pin 17, (RAO).

? show aschematic [Note, pin numbers are shown looking at the chips from below].
In addition, some provision has to be made to signal a dump of 24C65 memory to the PC. A simple way isto
add a PC boardjumper to ground on RB3, (pin 9). If the jumper isin place, control on start-up istransferred to
'MEMDUMP'. Note that if the jumper is not in place, collection of datawill begin on power-up and memory
will be overwritten. Y ou may prefer aslide switch rather than a jumper.

USING THE DATALOGGER

To use the datalogger you simply turn it on and press the button when you want to start collecting data. The
LED will blink as each four bytes for adata point is collected. If the time interval between readingsis not
correct, turn the unit off and reset it as described in the 'DEGREES' program.

After collecting data and before you turn the unit off, be sure to press and hold the button to save the stopping
address. Hold the button down for at least a second or two. Put the jumper on to prevent loss of dataif the unit
is accidently turned on again.

While the jumper is on, connect to a PC COM?2 port. Run the program 'READUMP' and turn the power on.
Press the button to start data transfer. The datal ogger doesn't convert the binary datato decimal like the
'DEGREES program. Thisis done in the 'READUMP' program. Two other collected bytes are used to break
the reading down to tenths of adegree. Thisis done more easily in the higher level language. It makes the
graphs less 'blocky'. Thefile created by 'READUMP can be loaded into a spreadsheet program or graphed
with the program 'GRAFDATA".

IMPROVEMENTS

The ceramic resonator seems to be accurate to only a percent or so. A quartz crystal would be more accurate
but much larger. If you use a quartz crystal consider trimming the overall main loop to make it closer to one
second. I've added coarse and fine loops just before getting the EEPROM delay. | set these roughly by seeing
how much the blinking lagged over long periods of time and inserting appropriate numbers.

One thing I've thought of adding but haven't worked out yet is multiple collections of data. The ideawould be
to hold starting locations in data EEPROM and cycle through them, indicating which collection you want to
dump. It would probably mean adding a line to transmit data to the PIC from the PC. A 22k resistor would be
used to limit current from the RS232 TX line.

It would be nice to reduce the amount of current drawn by the unit to extend battery life. One way to do this
would be to use SLEEP mode, but you would have to supply alow current external clock to do this because
the PIC clock shuts down during SLEEP. A simpler way to save current is to put a switch in series with the
LED to takeit out of the circuit when not needed. The PIC itself seemsto draw only amilliamp or so. Itis
also possible to run the circuit at 3 volts which reduces the current. A lower clock rate would help too but you
might have to reduce the RS232 transmit baud rate.

A readout of temperature on the unit itself would be nice. The problem is that we only have 6 port bits left, (7
if you count RB1). It would probably mean quite a bit of extra hardware for miminimal advantage.

The conversion to tenths of a degree and decimal output asin 'DEGREES could have been done in the PIC. |
just thought it would be easier in a higher level language.

THANKS

I would like to thank all people that have posted PIC information on the Internet. After all, that iswhere | got
all the material | learned from. | would especialy like to thank:
? David Tait - TOPIC and simple demo programs. Links at
http://www.man.ac.uk/~mbhstdj/piclinks.html.
? P.H. Anderson and his students at http://www.phanderson.com. Many code Exemplos including ones
for DS1820 and 24C65. He also sells parts and kits at very reasonable prices.
? Microchip - Lots of application notes and spec sheets. Among the most useful for this project are
DS30430B, (PIC16F8X) & DS21189B, (24LC64, | couldn't find a'65). http://www.microchip.com.
? Steve Marchant at http://www.nottingham.ac.uk/~cczsteve/pic/ds1820.asm has DS1820 support for
the PIC16C84.
? Pardlax Inc. - For their 'Pic Applications Handbook'. The RS232 sections were very helpful for this
project. ftp:/ftp.parallaxinc.com/pub/acrobat/picapps.pdf.

Written by Stan Ockers.
WWW space provided by Manchester University.
Links

http://www.nexuscomputing.com/~picarchive

