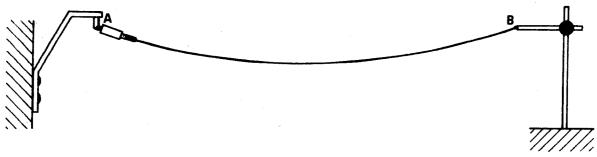
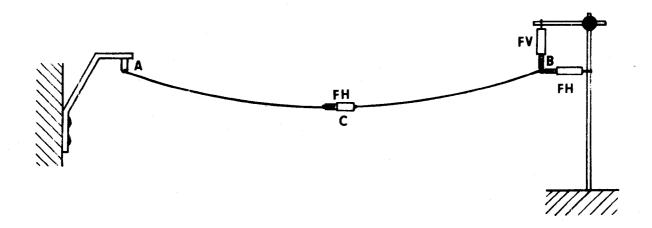

NOÇÕES ELEMENTARES DO CÁLCULO DE LINHAS


Terminologia utili∠ada	1
Vão simples	2
Comparação entre o comprimento do vão e do condutor	4
Apoio de alinhamento	5
Os desníveis	6
Determinação do sinal do desnível para vários vãos	9
Apoio de ângulo	14
Características dos condutores	18

TERMINOLOGIA UTILIZADA

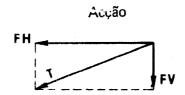
Simbolos	Designações	Unidades
а	Vão — distância horizontal entre dois apoios	m m
H h	Altura entre o ponto de amarração do condutor e o solo Desnível entre dois pontos de amarração	m m
f L	Flecha — maior distância vertical entre o condutor e a recta AB Comprimento real do condutor	m m

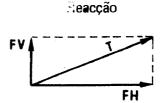
1



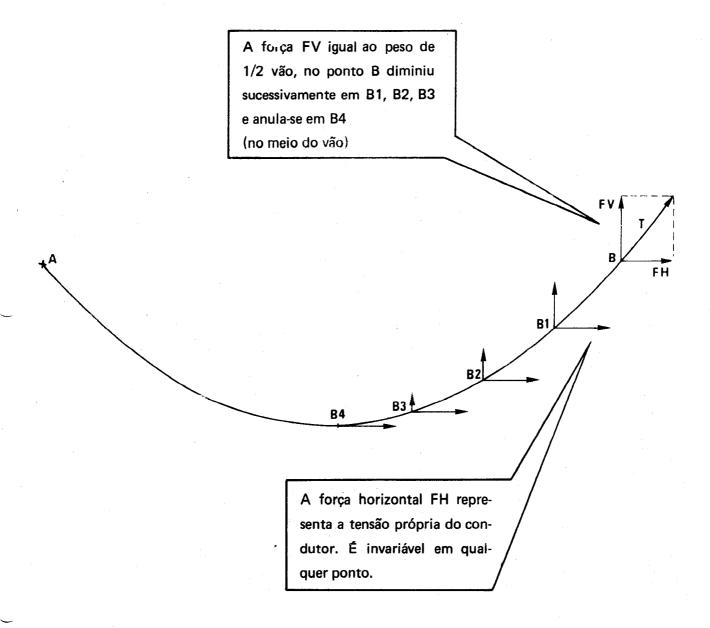
Condições:

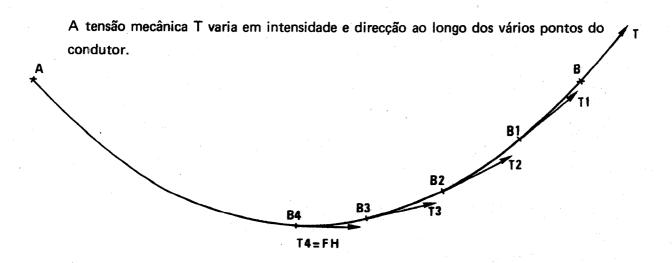
- Um condutor de peso P esticado entre 2 apoios
- Os pontos de amarração A e B estão ao mesmo nível


A medida da tensão mecânica dá-nos o valor da força T tangente ao condutor no ponto A ou no ponto B.



A força T pode ser decomposta em duas forças: Uma FH horizontal e outra FV vertical.

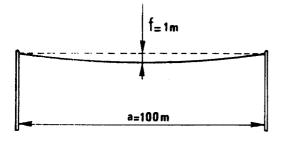

Verifica-se que:
$$FV = \frac{P}{2}$$



Conclusão:

- A força FV representa o pesor de 1/2 vão
- A força FH é a tensão mecânica própria do condutor que o dinamómetro C mede igualmente.

A resultante $\overrightarrow{T} = \overrightarrow{FV} + \overrightarrow{FH}$ é sempre tangente à curva que o condutor faz e vem confundir-se com FH no ponto B4 (em que FV=0)

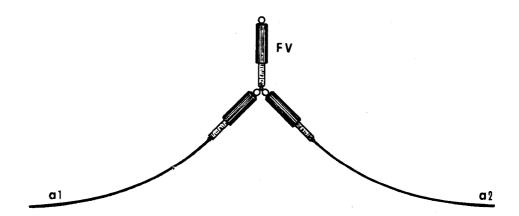


COMPARAÇÃO ENTRE O COMPRIMENTO DO VÃO E O COMPRIMENTO DO CONDUTOR

O comprimento L de um condutor, em função do vão a e da flecha f, é dado por

$$L = a + \frac{8 f^2}{3a}$$

Consideremos um vão de 100 m e calculemos o comprimento do condutor nos casos de termos flechas de 1 e 2 m.



L =
$$100 + 8 \times 1 = 100,0266 \text{ m}$$

ou seja 2,66 cm de diferença entre o
comprimento do condutor e o vão

$$L = 100 + 8 \times 4 = 100,1066 \text{ m}$$

ou seja 10,7 cm de diferença

- Verifica-se que a diferença entre o comprimento do condutor e o vão é proporcional ao quadrado da flecha.
- No entanto, na maior parte dos casos, a diferença é desprezável

APOIO DE ALINHAMENTO

Constatações:

1- dois vãos iguais a1 = a2 implica que os pesos dos dois condutores são iguais P1 = P2

$$FV = \frac{P_1 + P_2}{2}$$

2- dois vãos diferentes a1 # a2 implica que P1 # P2

$$FV = \frac{P_1 + P_2}{2}$$

O peso do condutor P obtém-se pelo produto do peso unitário do condutor ω pelo comprimento do vão

$$P1 = \omega \times a_1$$

$$P2 = \omega \times a_0$$

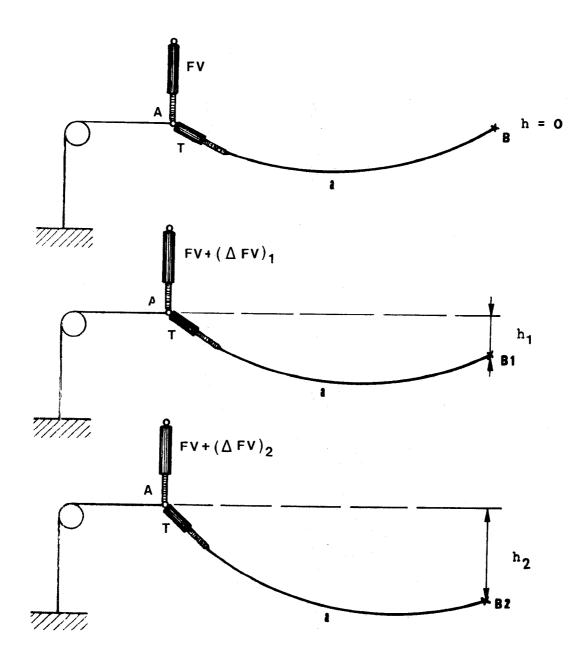
$$FV = \left(\frac{\omega \times a_1}{2}\right) + \left(\frac{\omega \times a_2}{2}\right)$$

$$FV = \omega \frac{(a_1 + a_2)}{2}$$

Das tabelas podem-se tirar os valores dos pesos unitários dos diversos tipos de condutores. Por exemplo:

$$\omega = 0.312 \text{ daN/m}$$

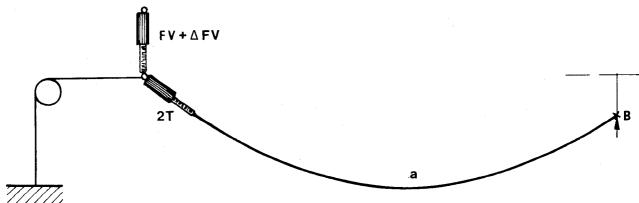
$$\omega = 0.240 \text{ daN/m}$$


$$\omega = 0.208 \text{ daN/m}$$

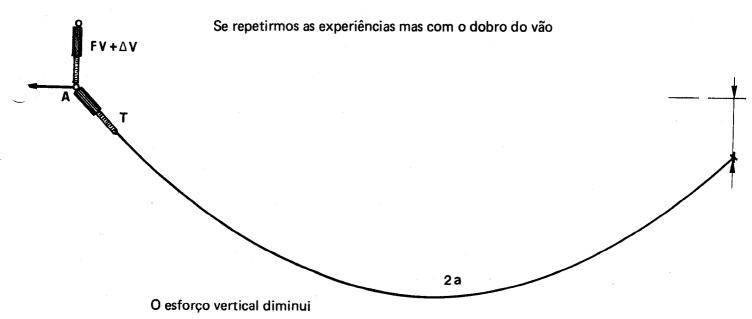
OS DESNÍVEIS

Seja um vão a entre os pontos de amarração A e B Coloquemos 2 dinamómetros no ponto A, que medem:

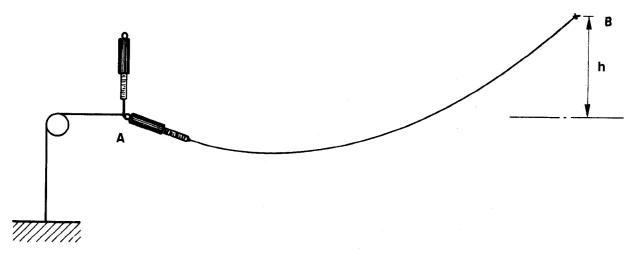
- um a tensão mecânica T
- outro o esforço vertical FV


Deslocando a posição do ponto B obtemos um desnível h entre os pontos A e B.

O esforço vertical aumenta.


Este aumento \triangle FV é proporcional ao desnível h

Se repetirmos as experiências anteriores aumentando a tensão mecânica para o dobro.


O esforço vertical aumenta.

Este aumento ΔFV é directamente proporcional à tensão mecânica T.

A variação Δ FV é inversamente proporcional ao comprimento do vão

Se repetirmos ainda as experiências, mas com um desnível negativo em relação ao ponto A, isto é,se h for negativo em relação ao ponto A.

- Verificamos que se obtêm os mesmos valores absolutos para Δ FV mas de sinal contrário.
- O facto do ponto B estar mais alto conduz a um esforço vertical menor no ponto A.

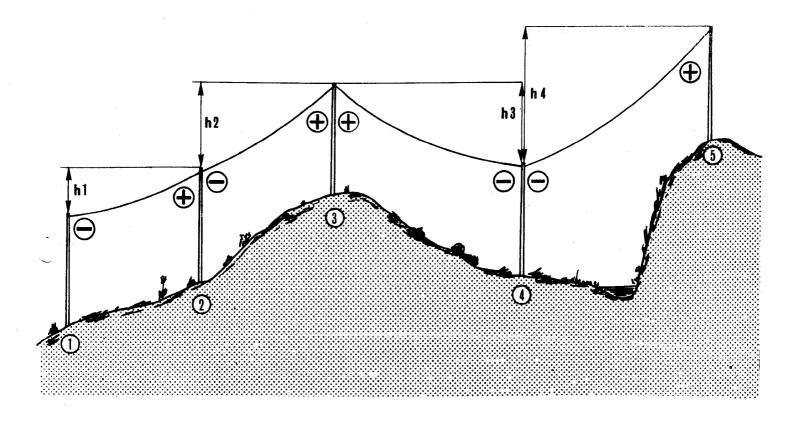
Como se verificou que A FV é

- directamente proporcional ao desnível h
- directamente proporcional à tensão mecânica T
- inversamente proporcional ao vão a

Podemos escrever

$$\Delta FV = T \frac{h}{a}$$

Δ FV será positivo ou negativo conforme o sinal do desnível h

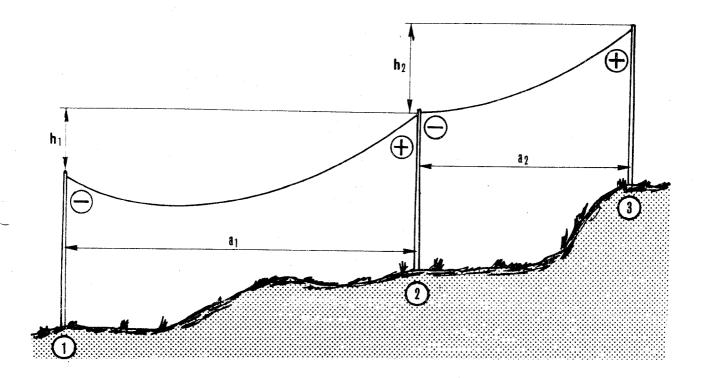

logo um vão desnivelado, o esforço vertical, num dos pontos de amarração será

$$FV = \omega \left(\frac{a}{2} \right) + \Delta FV$$

ou

$$FV = \omega \left(\frac{a}{2}\right) + T \frac{h}{a}$$

DETERMINAÇÃO DO SINAL DO DESNÍVEL h PARA VÁRIOS VÃOS


O apoio 2 está mais alto que o apoio 1, logo o desnível h1 no apoio 1 é negativo.

O apoio 1 está mais abaixo que o apoio 2, logo o desnível h1 no apoio 2 é positivo, em contrapartida o desnível h2 no apoio 2 é negativo.

No apoio 3 os desníveis h2 e h3 são positivos

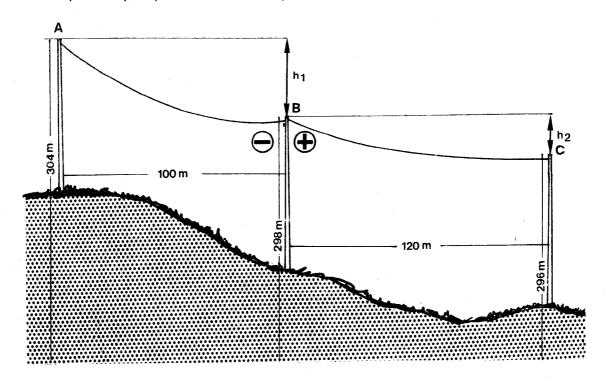
No apoio 4 os desníveis h3 e h4 são negativos

No apoio 5 o desnível h4 é positivo

- o esforço vertical devido ao vão a1 no apoio 2

$$\dot{e}$$
: $F_1 v = \omega \left(\frac{a_1}{2}\right) + T \left(\frac{h_1}{a_1}\right)$

 o esforço vertical devido ao vão a 2 no apoio 2 (note-se que neste caso o valor de h2 é negativo


é:
$$F_2 v = \omega \left(\frac{a_2}{2}\right) + T \left(\frac{h_2}{a_2}\right)$$

Logo o esforço vertical total no apoio 2 é igual a:

$$F_1v + F_2v = \omega \left(\frac{a_1}{2}\right) + T\left(\frac{h_1}{a_1}\right) + \omega \left(\frac{a_2}{2}\right) + T\left(\frac{h_2}{a_2}\right)$$

Fv =
$$\omega \left(\frac{a_1 + a_2}{2} \right) + T \left(\frac{h_1}{a_1} + \frac{h_2}{a_2} \right)$$

Exemplos de aplicação: Calcular o esforço vertical no apoio B, para os casos seguintes

Condutor Almelec de $S = 55 \text{ mm}^2$ Tensão mecânica T = 300 daN

Resolução

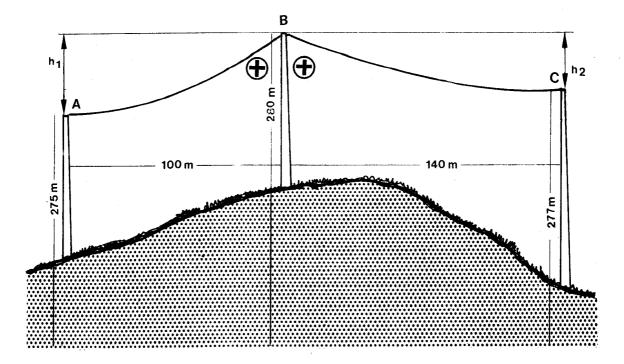
Da figura conclui-se que:

$$a_1 = 100 \text{ m}$$

$$a_2 = 120 \text{ m}$$
 $h_1 = 6 \text{ m}$
 $h_2 = 2 \text{ m}$

$$h_1 = 6 \, \text{m}$$

$$h_2' = 2 \text{ m}$$


Das tabelas dos condutores Almelec S=55 mm² $\Rightarrow \omega$ = 0,149 daN/m Cálculo

$$FV = \omega \left(\frac{a_1 + a_2}{2} \right) + T \left(\frac{h_1}{a_1} + \frac{h_2}{a_2} \right)$$

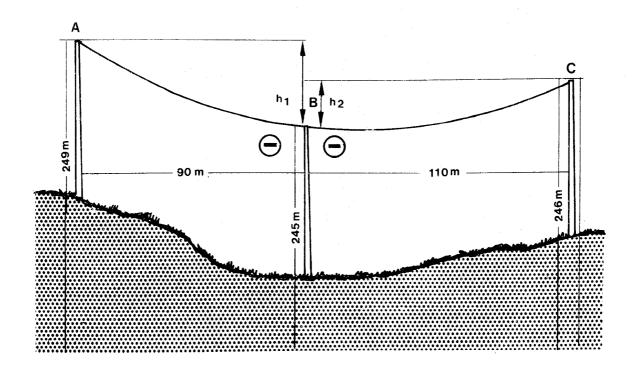
$$FV = 0.149 \left(\frac{100 + 120}{a} \right) + 300 \left(-\frac{6}{100} + \frac{2}{120} \right)$$

$$FV = 0.149 \times 110 + 300 \left(-\frac{26}{600} \right)$$

$$FV = 16,4 - 13$$

Condutor Al-aço de S = 70 mm²
Tensão mecânica T = 350 daN
Resolução
Da figura conclui-se que:

$$a_1 = 100 \text{ m}$$
 $a_2 = 140 \text{ m}$
 $h_1 = 5 \text{ m}$
 $h_2 = 3 \text{ m}$


Das tabelas dos condutores Alu-aço S = 70 mm² $\implies \omega = 0,240 \text{ daN/m}$

$$FV = \omega(\frac{a_1 + a_2}{2}) + T(\frac{h_1}{a_1} + \frac{h_2}{a_2})$$

$$FV = 0.240(\frac{100 + 140}{2}) + 350(\frac{5}{100} + \frac{3}{140})$$

$$FV = 0.240 \times 120 + 350(\frac{50}{700})$$

$$FV = 28.8 + 25$$

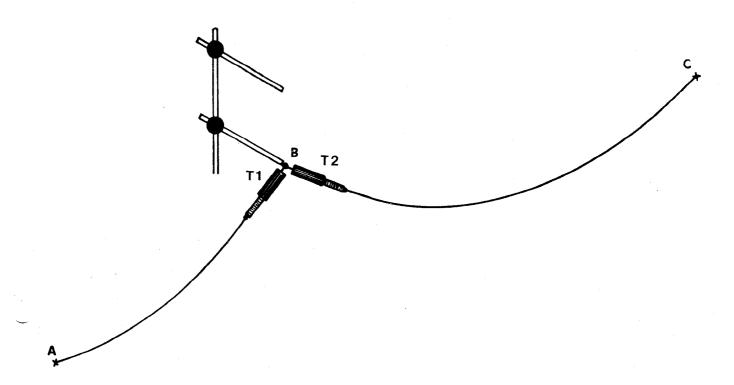
Condutor Cobre de S = 50 mm²
Tensão mecânica T = 400 daN
Resolução:
Da figura conclui-se que:

$$a_1 = 90 \text{ m}$$

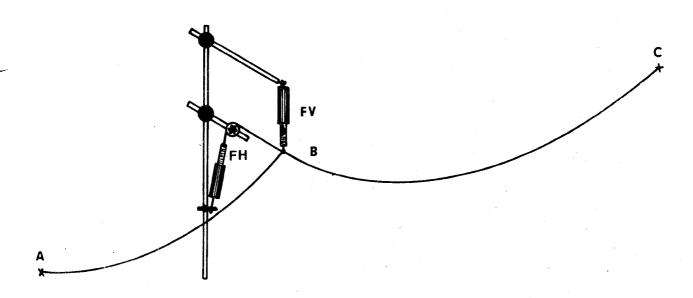
 $a_2 = 110 \text{ m}$
 $h_1 = 4 \text{ m}$
 $h_2 = 1 \text{ m}$

Das tabelas dos condutores

Cobre $S = 50 \text{ mm}^2 \implies \omega = 0,440 \text{ daN/m}$ Cálculo

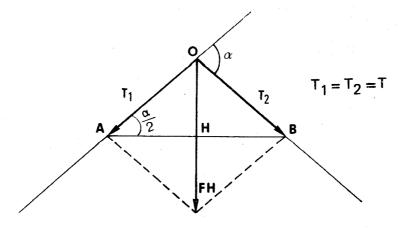

$$FV = \omega(\frac{a_1 + a_2}{2}) + T(\frac{h_1}{a_1} + \frac{h_2}{a_2})$$

$$FV=0.440(\frac{90+110}{2}) + 400(-\frac{4}{90} - \frac{1}{110})$$


$$FV = 0.440 \times 100 + 400 \left(\frac{-53}{990} \right)$$

$$FV = 44 - 21.4$$

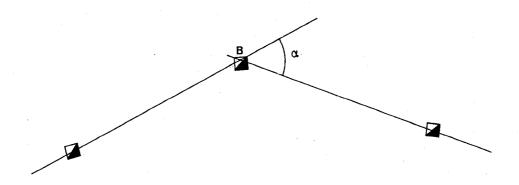
APOIO DE ÂNGULO


- Consideremos três pontos de amarração A, B e C ao mesmo nível.
- Os dois dinamómetros em B indicam as tensões mecânicas T1 e T2
- Vamos determinar o esforço vertical e o esforço horizontal no ponto B por meio de dois dinamómetros.

O esforço vertical como anteriormente é igual a:

$$FV = \omega \left(\frac{a_1 + a_2}{2} \right)$$

O esforço horizontal é o resultado da composição das forças T1 e T2 devido à tensão mecânica do condutor de um lado e do outro do ponto de amarração


No triângulo rectângulo AOH

sen
$$(\frac{\alpha}{2}) = \frac{OH}{OA}$$
 ou $OH = OA$. sen $(\frac{\alpha}{2})$

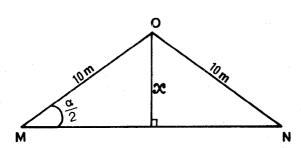
$$OA = T \implies OH = T \cdot sen(\frac{\alpha}{2})$$

$$FH = 2.0H \implies FH = 2T \cdot sen \left(\frac{\alpha}{2}\right)$$

EXEMPLO DE APLICAÇÃO

Seja um poste B de ângulo

Com
$$\alpha = 26^{\circ} \Longrightarrow \frac{\alpha}{2} = 13^{\circ}$$


$$T1 = T2 = 300 \text{ daN}$$

$$FH = 2T \text{ sen } \frac{\alpha}{2}$$

$$= 2 \times 300 \times 0.225$$

$$= 135 \text{ daN}$$

- 1— O ângulo α é chamado ângulo de desvio O valor de sen $(\frac{\alpha}{2})$ pode ser obtido nas tábuas trigonométricas
- 2— Se não se conhece o ângulo α pode-se determinar no terreno com uma fita métrica, directamente o valor de sen $(\frac{\alpha}{2})$

- marcar na vertical dos condutoresOM = ON = 10m
- medir x em metros

$$\operatorname{sen} \left(\frac{\alpha}{2}\right) = \frac{x}{10}$$

APOIOS DE ALINHAMENTO

SEM DESNÍVEL	$\mathbf{FV} = \omega \ (\frac{a_1 + a_2}{2})$
SEW DESINIVEL	FH = 0
COM DESNIVEL	$FV = \omega \left(\frac{a_1 + a_2}{2}\right) + T \left(\frac{h_1}{a_1} + \frac{h_2}{a_2}\right)$
COM BEOMVEE	FH = 0

APOIOS DE ÂNGULO

SEM DESNIVEL	$\mathbf{FV} = \omega \ (\frac{a_1 + a_2}{2})$
OLIN DEGIVIVE	$FH = 2T \cdot sen \left(\frac{\alpha}{2}\right)$
COM DESNÍVEL	$FV = \omega \left(\frac{a_1 + a_2}{2}\right) + T \left(\frac{h_1}{a_1} + \frac{h_2}{a_2}\right)$
COW DESINIVEL	$FH = 2T \cdot sen \left(\frac{\alpha}{2}\right)$

CONDUTORES (CARACTERÍSTICAS)

						-						
		S SECÇÃO		CONSTITUIÇÃO	ΙΙÇÃΟ	DIÂMETRO	PESO UNIT.	CARGA UNIT.	RESISTEN.	RESISTEN.	MÓDULO	COEFICIENTE
CONDUTORES	Nominal	Real	Cobre •equival.	Número x diâmetro (mm)	etro (mm)	DO CONDUTOR	DO CONDUTOR	DE ROTURA (aproxim)	A 20 C	A 40 C	DE ELASTICIDADE	DE DILATAÇÃO LINEAR
	mm ²	mm ²	mm ²			mm	daN / km	daN/ mm²-	Ohm/km	Ohm/km	daN/ mm²	por ∘C
	0.	10,17	1	x 2 x	1,36	4,08	92.0	7 7	1,770	1,909	10 500	17 x 10 ⁻⁶
	16	15,89	1	, ×	1,70	5, 10	144,1	4.2	1,130	1, 219	10 500	17 x 10 ⁻⁵
COBRE	25	25,13	ı	x 2	2,18	5,54	236,8	4.2	0,680	0,733	10 500	17 x 10 ⁻⁶
	35	34,36	1	× ′	2,50	7,50	311,6	4.2	0,520	0,561	10 500	17 × 10 ⁻⁶
	20	48,35	ł	x 5t	1,80	00,6	0,022	41	0,373	0,402	10 500	17 x 10 ⁻⁵
				Alumínio	Aço						Inicial Final	
Will de tech	20	21,99	12	6 x 2,00	1 × 2,00	6,00	77.0	3.2	1,520	1,643	6 120 8 100	19 x 10 ⁵
	3.0	30,62	16	6 x 2,36	1 x 2,35	7,08	105,0	3.2	1,090	1,178	6 120 8 100	19 × 10 ⁻⁶
AL-AÇO	07	40,70	2.2	6 x 2,72	1 × 2,72	8,16	141.0	3.1	0,321	0,887	6 120 8 100	19 × 10 ⁻⁵
	20	49,48	26	00'E × 3	1 × 3,00	00'6	172,0	3.1	0,675	0.729	6 120 8 100	19 x 10 ⁻⁶
	70	69,23	3.7	8 x 3 5 5	1 x 3,55	10,65	240,0	O´E	0,482	0,521	6 120 8 100	19 × 10 ⁶
	0.6	87,97	7.7	00'7 × 9	1 × 4,00	12,00	305,0	2.9	0,380	0,411	6 120 8 100	19 x 10 ⁶
	20	21,99	-	x 7	2.00	6,00	60,2	3.3	1,500	1,508	6 118	23 x 10 ⁵
ALMELEC	3.5	34,36	65	x 7	2,50	7,50	94,0	3 3	0,958	1,027	6 118	23 x 10 ⁻⁶
	5.5	54,55	2.8	× .	3,15	9,45	14.9,0	6.6	0,603	0,646	6 118	23 x 10 ⁶
	7.5	75,54	6.6	× 6:	2,25	11,25	208,0	3.3	0,433	0.470	6 118	23 x 10 ⁵